scholarly journals The Antibiotic Micrococcin Is a Potent Inhibitor of Growth and Protein Synthesis in the Malaria Parasite

1998 ◽  
Vol 42 (3) ◽  
pp. 715-716 ◽  
Author(s):  
M. John Rogers ◽  
Eric Cundliffe ◽  
Thomas F. McCutchan

ABSTRACT The antibiotic micrococcin is a potent growth inhibitor of the human malaria parasite Plasmodium falciparum, with a 50% inhibitory concentration of 35 nM. This is comparable to or less than the corresponding levels of commonly used antimalarial drugs. Micrococcin, like thiostrepton, putatively targets protein synthesis in the plastid-like organelle of the parasite.

2018 ◽  
Author(s):  
Christine Moore Sheridan ◽  
Valentina E. Garcia ◽  
Vida Ahyong ◽  
Joseph L. DeRisi

AbstractThe continued specter of resistance to existing antimalarials necessitates the pursuit of novel targets and mechanisms of action for drug development. One class of promising targets consists of the 80S ribosome and its associated components comprising the parasite translational apparatus. Development of translation-targeting therapeutics requires a greater understanding of protein synthesis and its regulation in the malaria parasite. Research in this area has been limited by the lack of appropriate experimental methods, particularly a direct measure of parasite translation. We have recently developed and optimized the PfIVT assay, an in vitro method directly measuring translation in whole-cell extracts from the malaria parasite Plasmodium falciparum.Here, we present an extensive pharmacologic assessment of the PfIVT assay using a wide range of known inhibitors, demonstrating its utility for studying activity of both ribosomal and non-ribosomal elements directly involved in translation. We further demonstrate the superiority of this assay over a historically utilized indirect measure of translation, S35-radiolabel incorporation. Additionally, we utilize the PfIVT assay to investigate a panel of clinically approved antimalarial drugs, many with unknown or unclear mechanisms of action, and show that none inhibit translation, reaffirming Plasmodium translation to be a viable alternative drug target. Within this set, we unambiguously find that mefloquine lacks translation inhibition activity, despite having been recently mischaracterized as a ribosomal inhibitor. This work exploits a direct and reproducible assay for measuring P. falciparum translation, demonstrating its value in the continued study of protein synthesis in malaria and its inhibition as a drug target.Author summaryNovel antimalarial drugs are required to combat rising resistance to current therapies. The protein synthesis machinery of the malaria parasite Plasmodium falciparum is a promising unexploited target for antimalarial development, but its study has been hindered by use of indirect experimental methods which often produce misleading and inaccurate results. We have recently developed a direct method to investigate malaria protein synthesis utilizing whole-parasite extracts. In this work, we present an extensive characterization of the assay, using a panel of pharmacologic inhibitors with known mechanisms of action. We demonstrate the specificity of the assay in various stages of protein synthesis, as well as its improved accuracy and sensitivity in comparison to an indirect measure that has been the previous standard for the field. We further demonstrate that no current clinically available antimalarial drugs inhibit protein synthesis, emphasizing its potential as a target for drugs that will overcome existing resistance. Importantly, among the antimalarials tested was mefloquine, a widely used antimalarial that has recently been mischaracterized as an inhibitor protein synthesis. Our finding that mefloquine does not inhibit protein synthesis emphasizes the importance of using direct functional measurements when determining drug targets.


2021 ◽  
Author(s):  
Charu Upadhyay ◽  
Neha Sharma ◽  
Sumit Kumar ◽  
Prem Prakash Sharma ◽  
Diana Fontinha ◽  
...  

A series of morpholine analogs functionalized with hydroxyethylamine (HEA) pharmacophore was synthesized and assayed for the initial screening against Plasmodium falciparum 3D7 in culture, which suggested that analog 6k is a hit molecule with an inhibitory concentration of 5.059 ± 0.2036 μM.


1988 ◽  
Vol 254 (5) ◽  
pp. F747-F753
Author(s):  
M. M. Walsh-Reitz ◽  
R. I. Feldman ◽  
F. G. Toback

Cultures that achieved a higher cell density than expected were noted during study of growth regulation in monkey kidney epithelial cells of the BSC-1 line. Multiplication of the variant cells was accelerated, compared with parental cells, as the cultures approached confluence. Cytogenetic analysis, immunofluorescence antibody reactions with specific monkey serum, isoenzyme analysis, microbiological studies, and lack of growth in soft agar indicated that the variant cells were not a contaminating cell type, lacked new isoenzymes, were free of microbial contamination, and were not transformed. Confluent variant cultures did not respond to a purified growth inhibitor protein produced by BSC-1 cells that inhibits multiplication and reduces cell Na content in subconfluent variant and parental cells. Vasopressin, which is a mitogen for parental cells, was a potent growth inhibitor for confluent cultures of variant cells. Low-K or high-Na media, which stimulate proliferation of parental cells, had no effect on growth of the variant cell line. These results suggest that enhanced multiplication of the variant cells is mediated by altered signal transduction pathways and/or receptors for growth-regulatory molecules.


Parasitology ◽  
2000 ◽  
Vol 121 (2) ◽  
pp. 127-133 ◽  
Author(s):  
T. G. SMITH ◽  
P. LOURENÇO ◽  
R. CARTER ◽  
D. WALLIKER ◽  
L. C. RANFORD-CARTWRIGHT

Sign in / Sign up

Export Citation Format

Share Document