scholarly journals Use of the Hepatitis B Virus Recombinant Baculovirus-HepG2 System to Study the Effects of (−)-β-2′,3′-Dideoxy-3′-Thiacytidine on Replication of Hepatitis B Virus and Accumulation of Covalently Closed Circular DNA

1999 ◽  
Vol 43 (8) ◽  
pp. 2017-2026 ◽  
Author(s):  
William E. Delaney ◽  
Thomas G. Miller ◽  
Harriet C. Isom

ABSTRACT (−)-β-2′,3′-Dideoxy-3′-thiacytidine (lamivudine [3TC]) is a nucleoside analog which effectively interferes with the replication of hepatitis B virus (HBV) DNA in vitro and in vivo. We have investigated the antiviral properties of 3TC in vitro in HepG2 cells infected with recombinant HBV baculovirus. Different types of information can be obtained with the HBV baculovirus-HepG2 system because (i) experiments can be carried out at various levels of HBV replication including levels significantly higher than those that can be obtained from conventional HBV-expressing cell lines, (ii) cultures can be manipulated and/or treated prior to or during the initiation of HBV expression, and (iii) high levels of HBV replication allow the rapid detection of HBV products including covalently closed circular (CCC) HBV DNA from low numbers of HepG2 cells. The treatment of HBV baculovirus-infected HepG2 cells with 3TC resulted in an inhibition of HBV replication, evidenced by reductions in the levels of both extracellular HBV DNA and intracellular replicative intermediates. The effect of 3TC on HBV replication was both dose and time dependent, and the reductions in extracellular HBV DNA that we observed agreed well with the previously reported efficacy of 3TC in vitro. As expected, levels of HBV transcripts and extracellular hepatitis B surface antigen and e antigen were not affected by 3TC. Importantly, the HBV baculovirus-HepG2 system made it possible to observe for the first time that CCC HBV DNA levels are lower in cells treated with 3TC than in control cells. We also observed that the treatment of HepG2 cells prior to HBV baculovirus infection resulted in a slight increase in the efficacy of 3TC compared to treatments starting 24 h postinfection. The treatment of HepG2 cells with the highest concentration of 3TC tested in this study (2 μM) prior to the initiation of HBV replication markedly inhibited the accumulation of CCC DNA, whereas treatment with the same concentration of 3TC at a time when CCC HBV DNA pools were established within the cells was considerably less effective. In addition, our results suggest that in HepG2 cells, non-protein-associated relaxed circular HBV DNA and particularly CCC HBV DNA are considerably more resistant to 3TC treatment than other forms of HBV DNA, including replicative intermediates and extracellular DNA. We conclude from these studies that the HBV baculovirus-HepG2 system has specific advantages for drug studies and can be used to complement other in vitro model systems currently used for testing antiviral compounds.

2003 ◽  
Vol 47 (1) ◽  
pp. 324-336 ◽  
Author(s):  
Ayman M. Abdelhamed ◽  
Colleen M. Kelley ◽  
Thomas G. Miller ◽  
Phillip A. Furman ◽  
Edward E. Cable ◽  
...  

ABSTRACT In this study, we used a quantitative assay to measure the concentration-dependent effects of antivirals on extracellular hepatitis B virus (HBV) DNA as well as on different cytoplasmic and nuclear forms of HBV DNA that participate in HBV replication. HBV recombinant baculovirus, which efficiently delivers the HBV genome to HepG2 cells, was used for this study because (i) antivirals can be administered prior to initiation of HBV infection or after HBV infection and (ii) sufficiently high HBV replication levels are achieved that HBV covalently closed circular (CCC) DNA can be easily detected and individual HBV DNA species can be quantitatively analyzed separately from total HBV DNA. The results showed that the levels of HBV replicative intermediate and extracellular DNA decreased in a concentration-dependent fashion following antiviral treatment. The 50% effective concentration (EC50) and EC90 values and the Hill slopes differed for the different HBV DNA species analyzed. The data clearly indicated that (i) nuclear HBV DNAs are more resistant to antiviral therapy than cytoplasmic or extracellular HBV DNAs and (ii) nuclear HBV CCC DNA is more resistant than the nuclear relaxed circular form. This report presents the first in vitro comparison of the effects of two antivirals administered prior to initiation of HBV infection and the first thorough in vitro quantitative study of concentration-dependent antiviral effects on HBV CCC DNA.


2004 ◽  
Vol 48 (6) ◽  
pp. 2199-2205 ◽  
Author(s):  
Radhakrishnan P. Iyer ◽  
Yi Jin ◽  
Arlene Roland ◽  
John D. Morrey ◽  
Samir Mounir ◽  
...  

ABSTRACT Several nucleoside analogs are under clinical development for use against hepatitis B virus (HBV). Lamivudine (3TC), a nucleoside analog, and adefovir dipivoxil (ADV), an acyclonucleotide analog, are clinically approved. However, long-term treatment can induce viral resistance, and following the cessation of therapy, viral rebound is frequently observed. There continues to be a need for new antiviral agents with novel mechanisms of action. A library of more than 600 di- and trinucleotide compounds synthesized by parallel synthesis using a combinatorial strategy was screened for potential inhibitors of HBV replication using the chronically HBV-producing cell line 2.2.15. Through an iterative process of synthesis, lead optimization, and screening, three analogs were identified as potent inhibitors of HBV replication: dinucleotides ORI-7246 (drug concentration at which a 10-fold reduction of HBV DNA was observed [EC90], 1.4 μM) and ORI-9020 (EC90, 1.2 μM) and trinucleotide ORI-7170 (EC90, 7.2 μM). These analogs inhibited the replication of both strands of HBV DNA. No suppression of HBV protein synthesis or intracellular core particle formation by these analogs was observed. No inhibition of HBV DNA strand elongation by the analogs or their 5′-triphosphate versions was apparent in in vitro polymerase assays. Although the exact mechanism of action is not yet identified, present data are consistent with an inhibition of the HBV reverse transcriptase-directed priming step prior to elongation of the first viral DNA strand. In transient-transfection assays, these analogs inhibited the replication of 3TC-resistant HBV. Synergistic interactions in combination treatments between the analogs and either 3TC or ADV were observed. These compounds represent a novel class of anti-HBV molecules and warrant further investigation as potential therapeutic agents.


2007 ◽  
Vol 51 (7) ◽  
pp. 2523-2530 ◽  
Author(s):  
E. Matthes ◽  
A. Funk ◽  
I. Krahn ◽  
K. Gaertner ◽  
M. von Janta-Lipinski ◽  
...  

ABSTRACT Novel N4-hydroxy- and 5-methyl-modified β-l-deoxycytidine analogues were synthesized and evaluated as anti-hepatitis B virus (HBV) agents. Their in vitro efficiencies were investigated in HepG2.2.15 cells stably transfected with HBV. β-l-2′,3′-Didehydro-2′,3′-dideoxy-N4-hydroxycytidine (β-l-Hyd4C) was most effective in reducing secreted HBV DNA (50% effective concentration [EC50], 0.03 μM), followed by β-l-2′,3′-dideoxy-3′-thia-N4-hydroxycytidine (EC50, 0.51 μM), β-l-2′,3′-dideoxy-N4-hydroxycytidine (EC50, 0.55 μM), and β-l-5-methyl-2′-deoxycytidine (EC50, 0.9 μM). The inhibition of the presumed target, the HBV DNA polymerase, by the triphosphates of some of the β-l-cytidine derivatives was also assessed. In accordance with the cell culture data, β-l-Hyd4C triphosphate was the most active inhibitor, with a 50% inhibitory concentration of 0.21 μM. The cytotoxicities of some of the 4-NHOH-modified β-l-nucleosides were dramatically lower than those of the corresponding cytidine analogues with the unmodified 4-NH2 group. The 50% cytotoxic concentrations for β-l-Hyd4C in HepG2 and HL-60 cells were 2,500 μM and 3,500 μM, respectively. In summary, our results demonstrate that at least β-l-Hyd4C can be recommended as a highly efficient and extremely selective inhibitor of HBV replication for further investigations.


1997 ◽  
Vol 41 (7) ◽  
pp. 1444-1448 ◽  
Author(s):  
S F Innaimo ◽  
M Seifer ◽  
G S Bisacchi ◽  
D N Standring ◽  
R Zahler ◽  
...  

BMS-200475 is a novel carbocyclic 2'-deoxyguanosine analog found to possess potent and selective anti-hepatitis B virus (anti-HBV) activity. BMS-200475 is distinguished from guanosine by replacement of the natural furanose oxygen on the sugar moiety with an exo carbon-carbon double bond. In the HepG2 stably transfected cell line 2.2.15, BMS-200475 had a 50% effective concentration (EC50) of 3.75 nM against HBV, as determined by analysis of secreted HBV DNA. Structurally related compounds with adenine, iodouracil, or thymine base substitutions were significantly less potent or were inactive. Direct comparison of the antiviral activities of BMS-200475 with those of a variety of other nucleoside analogs, including lamivudine (EC50 = 116.26 nM), demonstrated the clearly superior in vitro potency of BMS-200475 in 2.2.15 cells. Intracellular HBV replicative intermediates were uniformly reduced when cells were treated with BMS-200475, but rebounded after treatment was terminated. The concentration of BMS-200475 causing 50% cytotoxicity in 2.2.15 cell cultures was 30 microM, approximately 8,000-fold greater than the concentration required to inhibit HBV replication in the same cell line. Treatment with BMS-200475 resulted in no apparent inhibitory effects on mitochondrial DNA content.


2007 ◽  
Vol 81 (7) ◽  
pp. 3068-3076 ◽  
Author(s):  
Richard A. Heipertz ◽  
Thomas G. Miller ◽  
Colleen M. Kelley ◽  
William E. Delaney ◽  
Stephen A. Locarnini ◽  
...  

ABSTRACT Understanding the consequences of mutation in the hepatitis B virus (HBV) genome on HBV replication is critical for treating chronic HBV infection. In this study, HBV replication in HepG2 cells initiated by transduction with precore (PC), rtM204I, and wild-type (wt) HBV recombinant baculoviruses was compared. The pattern and magnitude of HBV replication initiated by the PC HBV recombinant baculovirus were similar to those observed for wt HBV throughout the time course examined. In contrast, when the rtM204I mutation was introduced into wt HBV, by day 10 postinfection the levels of intra- and extracellular HBV DNA were markedly reduced compared to those for wt HBV. Although the rtM204I mutation reduced the production of HBV replicative intermediates, no effect on the level of covalently closed circular DNA or HBV transcripts was observed at late time points. Coinfection studies with different ratios of wt and rtM204I baculoviruses showed that the rtM204I variant did not produce a product that inhibited HBV replication. However, the combination of the wt and rtM204I baculoviruses yielded HBV DNA levels at late time points that were greater than those for the wt alone, suggesting that wt polymerase may function in trans to boost rtM204I replication. We concluded that the rtM204I mutation generates a polymerase that is not only resistant to lamivudine but also replicates nucleic acids to lower levels in vitro.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiuzhu Gao ◽  
Xiumei Chi ◽  
Xiaomei Wang ◽  
Ruihong Wu ◽  
Hongqin Xu ◽  
...  

Interleukin-33 has been demonstrated to be associated with liver damage. However, its potential value in hepatitis B virus (HBV) infection remains unknown. This study was designed to investigate the role of IL-33 in hydrodynamic HBV mouse model. Different doses of IL-33 were used to treat HBV wild-type, ST2 knockout, CD8+ T depletion, NK depletion C57BL/6 mice and C.B-17 SCID and nod SCID mouse, respectively. The concentrations of HBV DNA, HBsAg, HBeAg, and molecules related to liver function were detected in the collected serum at different time points from model mice. Intrahepatic HBcAg was visualized by immunohistochemical staining of liver tissues. In vitro, hepG2 cells were transfected with pAAV-HBV 1.2, then treated with IL-33. The results showed that IL-33 significantly reduced HBV DNA and HBsAg in a dose-dependent manner in HBV wild-type mice. However, in the IL-33 specific receptor ST2 knockout mice, their antiviral effects could not be exerted. Through immunodeficient animal models and in vivo immune cell depletion mouse model, we found that IL-33 could not play antiviral effects without NK cells. Moreover, IL-33 could reduce the levels of HBsAg and HBeAg in the supernatant of HBV-transfected hepG2 cells in vitro. Our study revealed that IL-33 could inhibit HBV through ST2 receptor in the HBV mouse model, and this effect can be impaired without NK cell. Additionally, IL-33 had the direct anti-HBV effect in vitro, indicating that IL-33 could be a potent inducer of HBV clearance and a promising drug candidate.


2000 ◽  
Vol 74 (9) ◽  
pp. 4165-4173 ◽  
Author(s):  
Stefan F. Wieland ◽  
Luca G. Guidotti ◽  
Francis V. Chisari

ABSTRACT We have previously shown that hepatitis B virus (HBV) replication is abolished in the liver of HBV transgenic mice by stimuli that induce alpha/beta interferon (IFN-α/β) in the liver. The present study was done to identify the step(s) in HBV replication that is affected by this cytokine in transgenic mice treated with the IFN-α/β inducer polyinosinic-polycytidylic acid [poly(I-C)]. Here we show that the pool of cytoplasmic HBV pregenomic RNA (pgRNA)-containing capsids is reduced 10-fold within 9 h after poly(I-C) administration, while there is no change in the abundance of HBV mRNA or in the translational status of cytoplasmic HBV transcripts. In addition, we show that the pool of HBV DNA-containing capsids is not reduced to the same degree until at least 15 h posttreatment, and we show that virus export is not accelerated and the half-life of virions in the serum is unchanged. These results indicate that IFN-α/β triggers intracellular events that either inhibit the assembly of pgRNA-containing capsids or accelerate their degradation, and that maturation and secretion of virus is responsible for clearance of HBV capsids and their cargo of replicative intermediates from the cytoplasm of the hepatocyte.


2007 ◽  
Vol 88 (12) ◽  
pp. 3270-3274 ◽  
Author(s):  
Marianne Bonvin ◽  
Jobst Greeve

APOBEC3 cytidine deaminases hypermutate hepatitis B virus (HBV) and inhibit its replication in vitro. Whether this inhibition is due to the generation of hypermutations or to an alternative mechanism is controversial. A series of APOBEC3B (A3B) point mutants was analysed in vitro for hypermutational activity on HBV DNA and for inhibitory effects on HBV replication. Point mutations inactivating the carboxy-terminal deaminase domain abolished the hypermutational activity and reduced the inhibitory activity on HBV replication to approximately 40 %. In contrast, the point mutation H66R, inactivating the amino-terminal deaminase domain, did not affect hypermutations, but reduced the inhibition activity to 63 %, whilst the mutant C97S had no effect in either assay. Thus, only the carboxy-terminal deaminase domain of A3B catalyses cytidine deaminations leading to HBV hypermutations, but induction of hypermutations is not sufficient for full inhibition of HBV replication, for which both domains of A3B must be intact.


Sign in / Sign up

Export Citation Format

Share Document