scholarly journals Identification of BMS-200475 as a potent and selective inhibitor of hepatitis B virus.

1997 ◽  
Vol 41 (7) ◽  
pp. 1444-1448 ◽  
Author(s):  
S F Innaimo ◽  
M Seifer ◽  
G S Bisacchi ◽  
D N Standring ◽  
R Zahler ◽  
...  

BMS-200475 is a novel carbocyclic 2'-deoxyguanosine analog found to possess potent and selective anti-hepatitis B virus (anti-HBV) activity. BMS-200475 is distinguished from guanosine by replacement of the natural furanose oxygen on the sugar moiety with an exo carbon-carbon double bond. In the HepG2 stably transfected cell line 2.2.15, BMS-200475 had a 50% effective concentration (EC50) of 3.75 nM against HBV, as determined by analysis of secreted HBV DNA. Structurally related compounds with adenine, iodouracil, or thymine base substitutions were significantly less potent or were inactive. Direct comparison of the antiviral activities of BMS-200475 with those of a variety of other nucleoside analogs, including lamivudine (EC50 = 116.26 nM), demonstrated the clearly superior in vitro potency of BMS-200475 in 2.2.15 cells. Intracellular HBV replicative intermediates were uniformly reduced when cells were treated with BMS-200475, but rebounded after treatment was terminated. The concentration of BMS-200475 causing 50% cytotoxicity in 2.2.15 cell cultures was 30 microM, approximately 8,000-fold greater than the concentration required to inhibit HBV replication in the same cell line. Treatment with BMS-200475 resulted in no apparent inhibitory effects on mitochondrial DNA content.

2004 ◽  
Vol 48 (6) ◽  
pp. 2199-2205 ◽  
Author(s):  
Radhakrishnan P. Iyer ◽  
Yi Jin ◽  
Arlene Roland ◽  
John D. Morrey ◽  
Samir Mounir ◽  
...  

ABSTRACT Several nucleoside analogs are under clinical development for use against hepatitis B virus (HBV). Lamivudine (3TC), a nucleoside analog, and adefovir dipivoxil (ADV), an acyclonucleotide analog, are clinically approved. However, long-term treatment can induce viral resistance, and following the cessation of therapy, viral rebound is frequently observed. There continues to be a need for new antiviral agents with novel mechanisms of action. A library of more than 600 di- and trinucleotide compounds synthesized by parallel synthesis using a combinatorial strategy was screened for potential inhibitors of HBV replication using the chronically HBV-producing cell line 2.2.15. Through an iterative process of synthesis, lead optimization, and screening, three analogs were identified as potent inhibitors of HBV replication: dinucleotides ORI-7246 (drug concentration at which a 10-fold reduction of HBV DNA was observed [EC90], 1.4 μM) and ORI-9020 (EC90, 1.2 μM) and trinucleotide ORI-7170 (EC90, 7.2 μM). These analogs inhibited the replication of both strands of HBV DNA. No suppression of HBV protein synthesis or intracellular core particle formation by these analogs was observed. No inhibition of HBV DNA strand elongation by the analogs or their 5′-triphosphate versions was apparent in in vitro polymerase assays. Although the exact mechanism of action is not yet identified, present data are consistent with an inhibition of the HBV reverse transcriptase-directed priming step prior to elongation of the first viral DNA strand. In transient-transfection assays, these analogs inhibited the replication of 3TC-resistant HBV. Synergistic interactions in combination treatments between the analogs and either 3TC or ADV were observed. These compounds represent a novel class of anti-HBV molecules and warrant further investigation as potential therapeutic agents.


2011 ◽  
Vol 92 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Gaëtan Billioud ◽  
Christian Pichoud ◽  
Gerhard Puerstinger ◽  
Johan Neyts ◽  
Fabien Zoulim

1999 ◽  
Vol 43 (8) ◽  
pp. 2017-2026 ◽  
Author(s):  
William E. Delaney ◽  
Thomas G. Miller ◽  
Harriet C. Isom

ABSTRACT (−)-β-2′,3′-Dideoxy-3′-thiacytidine (lamivudine [3TC]) is a nucleoside analog which effectively interferes with the replication of hepatitis B virus (HBV) DNA in vitro and in vivo. We have investigated the antiviral properties of 3TC in vitro in HepG2 cells infected with recombinant HBV baculovirus. Different types of information can be obtained with the HBV baculovirus-HepG2 system because (i) experiments can be carried out at various levels of HBV replication including levels significantly higher than those that can be obtained from conventional HBV-expressing cell lines, (ii) cultures can be manipulated and/or treated prior to or during the initiation of HBV expression, and (iii) high levels of HBV replication allow the rapid detection of HBV products including covalently closed circular (CCC) HBV DNA from low numbers of HepG2 cells. The treatment of HBV baculovirus-infected HepG2 cells with 3TC resulted in an inhibition of HBV replication, evidenced by reductions in the levels of both extracellular HBV DNA and intracellular replicative intermediates. The effect of 3TC on HBV replication was both dose and time dependent, and the reductions in extracellular HBV DNA that we observed agreed well with the previously reported efficacy of 3TC in vitro. As expected, levels of HBV transcripts and extracellular hepatitis B surface antigen and e antigen were not affected by 3TC. Importantly, the HBV baculovirus-HepG2 system made it possible to observe for the first time that CCC HBV DNA levels are lower in cells treated with 3TC than in control cells. We also observed that the treatment of HepG2 cells prior to HBV baculovirus infection resulted in a slight increase in the efficacy of 3TC compared to treatments starting 24 h postinfection. The treatment of HepG2 cells with the highest concentration of 3TC tested in this study (2 μM) prior to the initiation of HBV replication markedly inhibited the accumulation of CCC DNA, whereas treatment with the same concentration of 3TC at a time when CCC HBV DNA pools were established within the cells was considerably less effective. In addition, our results suggest that in HepG2 cells, non-protein-associated relaxed circular HBV DNA and particularly CCC HBV DNA are considerably more resistant to 3TC treatment than other forms of HBV DNA, including replicative intermediates and extracellular DNA. We conclude from these studies that the HBV baculovirus-HepG2 system has specific advantages for drug studies and can be used to complement other in vitro model systems currently used for testing antiviral compounds.


2007 ◽  
Vol 88 (12) ◽  
pp. 3270-3274 ◽  
Author(s):  
Marianne Bonvin ◽  
Jobst Greeve

APOBEC3 cytidine deaminases hypermutate hepatitis B virus (HBV) and inhibit its replication in vitro. Whether this inhibition is due to the generation of hypermutations or to an alternative mechanism is controversial. A series of APOBEC3B (A3B) point mutants was analysed in vitro for hypermutational activity on HBV DNA and for inhibitory effects on HBV replication. Point mutations inactivating the carboxy-terminal deaminase domain abolished the hypermutational activity and reduced the inhibitory activity on HBV replication to approximately 40 %. In contrast, the point mutation H66R, inactivating the amino-terminal deaminase domain, did not affect hypermutations, but reduced the inhibition activity to 63 %, whilst the mutant C97S had no effect in either assay. Thus, only the carboxy-terminal deaminase domain of A3B catalyses cytidine deaminations leading to HBV hypermutations, but induction of hypermutations is not sufficient for full inhibition of HBV replication, for which both domains of A3B must be intact.


1987 ◽  
Vol 6 (3) ◽  
pp. 675-680 ◽  
Author(s):  
C.M. Chang ◽  
K.S. Jeng ◽  
C.P. Hu ◽  
S.J. Lo ◽  
T.S. Su ◽  
...  

2020 ◽  
Author(s):  
zhaoqing zeng ◽  
yuyang li ◽  
jinhong yu ◽  
jing liu ◽  
shijun chen ◽  
...  

Abstract Aims & background: IFI16 plays an important role in innate immunity against invasive microbial infection by sensing double-stranded DNA viruses due to caspase-1-dependent inflammasome activation and subsequent maturation and secretion of IL-1β. However, the role of IFI16 in regulating the immune response to viruses in vivo and in vitro, especially in sensing hepatitis B virus (HBV), has not been examined. We hypothesized that the expression of IFI16 increases corresponding to HBV-mediated inflammation in patients with hepatitis B virus associated glomerulonephritis (HBV-GN), a condition which activates inflammatory mechanisms and causes renal damage. To test this hypothesis, we therefore analyzed the expression of IFI16 and inflammatory factors in HBV-GN tissues and cell lines relative to the inflammatory response to HBV infection. Methods: A total 75 patients with chronic nephritis(CN) including 50 with HBV-GN and 25 with chronic glomerulonephritis (CCN) involved in this study. Each CN patient received renal biopsy, and immunohistochemistry(IHC) was used to detect the expression of IFI16 and inflammatory factors Caspase-1 and IL-1β in the biopsy specimens. Following IFI16 was transfected in HBV-infected and HBV-uninfected human glomerular mesangial (HGM) cell line and HEK-293T cell line, expression of Caspase-1 and IL-1β were detected by Western blot and qRT- PCR. Results: IFI16 expression in HBV-GN biopsies (80.0%) was significantly higher than in CGN (24.0%) and positively correlated with caspase-1 and IL-1𝛽 expression in HBV-GN. In vitro, over expression IFI16 increased caspase-1 and IL-1𝛽 expression in HBV -infected HGM and HEK-293T. Conclusions: The elevation of IFI16 during HBV infection or replication may contribute to renal damage due to inflammation, thus providing a putative therapeutic target and a new avenue for researching the pathogenesis of HBV-GN.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Franck Amblard ◽  
Sebastien Boucle ◽  
Leda Bassit ◽  
Bryan Cox ◽  
Ozkan Sari ◽  
...  

ABSTRACT Hepatitis B virus (HBV) affects an estimated 250 million chronic carriers worldwide. Though several vaccines exist, they are ineffective for those already infected. HBV persists due to the formation of covalently closed circular DNA (cccDNA)—the viral minichromosome—in the nucleus of hepatocytes. Current nucleoside analogs and interferon therapies rarely clear cccDNA, requiring lifelong treatment. Our group identified GLP-26, a novel glyoxamide derivative that alters HBV nucleocapsid assembly and prevents viral DNA replication. GLP-26 exhibited single-digit nanomolar anti-HBV activity, inhibition of HBV e antigen (HBeAg) secretion, and reduced cccDNA amplification, in addition to showing a promising preclinical profile. Strikingly, long term combination treatment with entecavir in a humanized mouse model induced a decrease in viral loads and viral antigens that was sustained for up to 12 weeks after treatment cessation.


2018 ◽  
Vol 45 (2) ◽  
pp. 744-760 ◽  
Author(s):  
Sha She ◽  
Min Yang ◽  
Huaidong Hu ◽  
Peng Hu ◽  
Yixuan Yang ◽  
...  

Background/Aims: Hepatitis B virus (HBV) infection is a major cause of cirrhosis and hepatocellular carcinoma. Therefore, we aimed to obtain further information on HBV pathogenesis, and to search for novel putative molecules for anti-HBV therapy. Methods: We utilized Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to identify the secretory proteins that are differentially expressed in the HBV DNA-transfected HepG2.2.15 cell line and its parental HepG2 cell line. Immunohistochemistry (IHC) was employed to assess the clinical relevance of the observations. Small interfering (si)RNA-based silencing transfection methods were carried out to study the function of ENPP2. Results: Totally, 133 unique proteins were identified as differentially expressed in HepG2.2.15 cell line compared with HepG2 cell line. Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 precursor (ENPP2) is one of the most significantly up-regulated secretory proteins associated with HBV replication. This differential expression of ENPP2 was further validated by real-time quantitative RT-PCR, Western Blot and immunohistochemical analysis. To study the function of ENPP2, we knockdown ENPP2 expression in HepG2.2.15 cell line by RNA interference. ENPP2 silencing increased HBV replication approximately 2.3-fold by enhancing, via the type I IFN signaling pathway, HBV cccDNA (covalently closed circular DNA) translation into viral RNA. Moreover, attenuation of ENPP2 expression inhibited both the invasion and migration ability of hepatoma cells in vitro via interacting with the molecules in the tumor microenvironment. Conclusion: Our study demonstrates that ENPP2 may be a novel anti-HBV target and indicate that suppression of its expression may inhibit the invasion and migration ability of hepatoma cells.


Sign in / Sign up

Export Citation Format

Share Document