scholarly journals Inhibitory Effects of Small-Molecule CCR5 Antagonists on Human Immunodeficiency Virus Type 1 Envelope-Mediated Membrane Fusion and Viral Replication

2001 ◽  
Vol 45 (12) ◽  
pp. 3538-3543 ◽  
Author(s):  
Katsunori Takashima ◽  
Hiroshi Miyake ◽  
Rika A. Furuta ◽  
Jun-Ichi Fujisawa ◽  
Yuji Iizawa ◽  
...  

ABSTRACT We established a human immunodeficiency virus type 1 (HIV-1) envelope (Env)-mediated membrane fusion assay and examined the small-molecule CCR5 antagonist TAK-779 and its derivatives for their inhibitory effects on HIV-1 Env-mediated membrane fusion and viral replication. The membrane fusion assay is based on HIV-1 long terminal repeat-directed β-d-galactosidase reporter gene expression in CD4- and CCR5-expressed HeLa (MAGI-CCR5) cells after cocultivation with effector 293T cells expressing HIV-1 Env. Inhibition of HIV-1 replication was also determined in MAGI-CCR5 cells infected with the corresponding cell-free HIV-1. TAK-779 effectively suppressed R5 HIV-1 (strain JR-FL) Env-mediated membrane fusion as well as viral replication. Its 50% inhibitory concentrations (IC50s) for membrane fusion and viral replication were 0.87 ± 0.11 and 1.4 ± 0.1 nM, respectively. These values corresponded well to the IC50 for 125I-RANTES (regulated on activation, T cell expressed, and secreted) binding to CCR5 (1.4 nM). The inhibitory effects of 18 TAK-779 derivatives on membrane fusion differed from one compound to another. However, there was a close correlation among their inhibitory effects on membrane fusion, viral replication, and RANTES binding. The correlation coefficient between their IC50s for membrane fusion and viral replication was 0.881. Furthermore, since this assay depends on Env expressed in the effector cells, it is also applicable to the evaluation of CXCR4 antagonists. These results indicate that the HIV-1 Env-mediated membrane fusion assay is a useful tool for the evaluation of entry inhibitors.

2010 ◽  
Vol 84 (11) ◽  
pp. 5842-5845 ◽  
Author(s):  
Rebecca Nedellec ◽  
Mia Coetzer ◽  
Michael M. Lederman ◽  
Robin E. Offord ◽  
Oliver Hartley ◽  
...  

ABSTRACT Resistance of human immunodeficiency virus type 1 (HIV-1) to small-molecule CCR5 inhibitors is well demonstrated, but resistance to macromolecular CCR5 inhibitors (e.g., PSC-RANTES) that act by both CCR5 internalization and receptor blockade had not been reported until recently (3). The report of a single simian-human immunodeficiency virus SHIVSF162-p3 variant with one V3 and one gp41 sequence change in gp160 that conferred both altered replicative fitness and resistance to PSC-RANTES was therefore surprising. We introduced the same two mutations into both the parental HIV-1SF162 and the macaque-adapted SHIVSF162-p3 and found minor differences in entry fitness but no changes in sensitivity to inhibition by either PSC-RANTES or the small-molecule allosteric inhibitor TAK-779. We attribute the earlier finding to confounding fitness effects with inhibitor sensitivity.


2006 ◽  
Vol 81 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Marie Lambelé ◽  
Béatrice Labrosse ◽  
Emmanuelle Roch ◽  
Alain Moreau ◽  
Bernard Verrier ◽  
...  

ABSTRACT The motifs involved in the various functions of the human immunodeficiency virus type 1 (HIV-1) gp41 cytoplasmic tail (CT), particularly those related to the intracellular trafficking and assembly of envelope glycoproteins (Env) onto core particles, have generally been assessed with a restricted panel of T-cell laboratory-adapted virus strains. Here, we investigated gp41 CT sequences derived from individuals infected with HIV-1 viruses of various subtypes. We identified four patients harboring HIV variants with a natural polymorphism in the membrane-proximal tyrosine-based signal Y712SPL or the Y802W803 diaromatic motif, which are two major determinants of Env intracellular trafficking. Confocal microscopy showed that the intracellular distribution of Env with a mutation in the tyrosine or diaromatic motif differed from that of Env with no mutation in these motifs. Surprisingly, the gp41 CTs of the primary viruses also had differential effects on the intracellular distribution of Env, independently of mutations in the tyrosine or diaromatic motifs, suggesting the involvement of additional determinants. Furthermore, analyses of virus replication kinetics indicated that the effects of mutations in the tyrosine or diaromatic motifs on viral replication depended on the gp41 CT context. These effects were at least partly due to differences in the efficiency of Env incorporation into virions. Thus, polymorphisms in primary HIV-1 gp41 CTs at the quasispecies or subtype level can influence the intracellular distribution of Env, its incorporation into virions, and viral replication capacity.


2004 ◽  
Vol 48 (11) ◽  
pp. 4349-4359 ◽  
Author(s):  
Shibo Jiang ◽  
Hong Lu ◽  
Shuwen Liu ◽  
Qian Zhao ◽  
Yuxian He ◽  
...  

ABSTRACT A recently approved peptidic human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, T-20 (Fuzeon; Trimeris Inc.), has shown significant promise in clinical application for treating HIV-1-infected individuals who have failed to respond to the currently available antiretroviral drugs. However, T-20 must be injected twice daily and is too expensive. Therefore, it is essential to develop orally available small molecule HIV-1 fusion inhibitors. By screening a chemical library consisting of “drug-like” compounds, we identified two N-substituted pyrroles, designated NB-2 and NB-64, that inhibited HIV-1 replication at a low micromolar range. The absence of the COOH group in NB-2 and NB-64 resulted in a loss of anti-HIV-1 activity, suggesting that this acid group plays an important role in mediating the antiviral activity. NB-2 and NB-64 inhibited HIV-1 fusion and entry by interfering with the gp41 six-helix bundle formation and disrupting the α-helical conformation. They blocked a d-peptide binding to the hydrophobic pocket on surface of the gp41 internal trimeric coiled-coil domain. Computer-aided molecular docking analysis has shown that they fit inside the hydrophobic pocket and that their COOH group interacts with a positively charged residue (K574) around the pocket to form a salt bridge. These results suggest that NB-2 and NB-64 may bind to the gp41 hydrophobic pocket through hydrophobic and ionic interactions and block the formation of the fusion-active gp41 core, thereby inhibiting HIV-1-mediated membrane fusion and virus entry. Therefore, NB-2 and NB-64 can be used as lead compounds toward designing and developing more potent small molecule HIV-1 fusion inhibitors targeting gp41.


2002 ◽  
Vol 76 (22) ◽  
pp. 11584-11595 ◽  
Author(s):  
Mathias Viard ◽  
Isabella Parolini ◽  
Massimo Sargiacomo ◽  
Katia Fecchi ◽  
Carlo Ramoni ◽  
...  

ABSTRACT In this study we examined the effects of target membrane cholesterol depletion and cytoskeletal changes on human immunodeficiency virus type 1 (HIV-1) Env-mediated membrane fusion by dye redistribution assays. We found that treatment of peripheral blood lymphocytes (PBL) with methyl-β-cyclodextrin (MβCD) or cytochalasin reduced their susceptibility to membrane fusion with cells expressing HIV-1 Env that utilize CXCR4 or CCR5. However, treatment of human osteosarcoma (HOS) cells expressing high levels of CD4 and coreceptors with these agents did not affect their susceptibility to HIV-1 Env-mediated membrane fusion. Removal of cholesterol inhibited stromal cell-derived factor-1α- and macrophage inflammatory protein 1β-induced chemotaxis of both PBL and HOS cells expressing CD4 and coreceptors. The fusion activity as well as the chemotactic activity of PBL was recovered by adding back cholesterol to these cells. Confocal laser scanning microscopy analysis indicated that treatment of lymphocytes with MβCD reduced the colocalization of CD4 or of CXCR4 with actin presumably in microvilli. These findings indicate that, although cholesterol is not required for HIV-1 Env-mediated membrane fusion per se, its depletion from cells with relatively low coreceptor densities reduces the capacity of HIV-1 Env to engage coreceptor clusters required to trigger fusion. Furthermore, our results suggest that coreceptor clustering may occur in microvilli that are supported by actin polymerization.


2006 ◽  
Vol 51 (2) ◽  
pp. 707-715 ◽  
Author(s):  
Masanori Baba ◽  
Hiroshi Miyake ◽  
Xin Wang ◽  
Mika Okamoto ◽  
Katsunori Takashima

ABSTRACT TAK-652, a novel small-molecule chemokine receptor antagonist, is a highly potent and selective inhibitor of CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) replication in vitro. Since TAK-652 is orally bioavailable and has favorable pharmacokinetic profiles in humans, it is considered a promising candidate for an entry inhibitor of HIV-1. To investigate the resistance to TAK-652, peripheral blood mononuclear cells were infected with the R5 HIV-1 primary isolate KK and passaged in the presence of escalating concentrations of the compound for more than 1 year. After 67 weeks of cultivation, the escape virus emerged even in the presence of a high concentration of TAK-652. This virus displayed more than 200,000-fold resistance to TAK-652 compared with the wild type. The escape virus appeared to have cross-resistance to the structurally related compound TAK-779 but retained full susceptibility to TAK-220, which is from a different class of CCR5 antagonists. Furthermore, the escape virus was unable to use CXCR4 as a coreceptor. Analysis for Env amino acid sequences of escape viruses at certain points of passage revealed that amino acid changes accumulated with an increasing number of passages. Several amino acid changes not only in the V3 region but also in other Env regions seemed to be required for R5 HIV-1 to acquire complete resistance to TAK-652.


2004 ◽  
Vol 78 (2) ◽  
pp. 1026-1031 ◽  
Author(s):  
Tsutomu Murakami ◽  
Sherimay Ablan ◽  
Eric O. Freed ◽  
Yuetsu Tanaka

ABSTRACT We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR+) or inactive (PR−) viral PR. We observed that PR− virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.


2003 ◽  
Vol 77 (19) ◽  
pp. 10528-10536 ◽  
Author(s):  
Qi Guo ◽  
Hsu-Tso Ho ◽  
Ira Dicker ◽  
Li Fan ◽  
Nannan Zhou ◽  
...  

ABSTRACT BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.


2000 ◽  
Vol 74 (7) ◽  
pp. 3196-3204 ◽  
Author(s):  
David Camerini ◽  
Hua-Poo Su ◽  
Graciela Gamez-Torre ◽  
Michael L. Johnson ◽  
Jerome A. Zack ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) patient isolates and molecular clones were used to analyze the determinants responsible for human CD4+ thymocyte depletion in SCID-hu mice. Non-syncytium-inducing, R5 or R3R5 HIV-1 isolates from asymptomatic infected people showed little or no human CD4+ thymocyte depletion in SCID-hu mice, while syncytium-inducing (SI), R5X4 or R3R5X4 HIV-1 isolates from the same individuals, isolated just prior to the onset of AIDS, rapidly and efficiently eliminated CD4-bearing human thymocytes. We have mapped the ability of one SI HIV-1 isolate to eliminate CD4+ human cells in SCID-hu mice to a region of the env gene including the three most amino-terminal variable regions (V1 to V3). We find that for all of the HIV-1 isolates that we studied, a nonlinear relationship exists between viral replication and the depletion of CD4+ cells. This relationship can best be described mathematically with a Hill-type plot indicating that a threshold level of viral replication, at which cytopathic effects begin to be seen, exists for HIV-1 infection of thymus/liver grafts in SCID-hu mice. This threshold level is 1 copy of viral DNA for every 11 cells (95% confidence interval = 1 copy of HIV-1 per 67 cells to 1 copy per 4 cells). Furthermore, while SI viruses more frequently achieve this level of replication, replication above this threshold level correlates best with cytopathic effects in this model system. We used GHOST cells to map the coreceptor specificity and relative entry efficiency of these early- and late-stage patient isolates of HIV-1. Our studies show that coreceptor specificity and entry efficiency are critical determinants of HIV-1 pathogenesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document