gp120 protein
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Young-Jung Lee ◽  
In Jun Yeo ◽  
Dong Young Choi ◽  
Jaesuk Yun ◽  
Dong Ju Son ◽  
...  

AbstractHuman immunodeficiency virus 1 (HIV-1) infection can cause several HIV-associated neurocognitive disorders a variety of neurological impairments characterized by the loss of cortical and subcortical neurons and decreased cognitive and motor function. HIV-1 gp120, the major envelope glycoprotein on viral particles, acts as a binding protein for viral entry and is known to be an agent of neuronal cell death. To determine the mechanism of HIV-1 gp120-induced memory dysfunction, we performed mouse intracerebroventricular (i.c.v.) infusion with HIV-1 gp120 protein (300 ng per mouse) and investigated memory impairment and amyloidogenesis. Infusion of the HIV-1 gp120 protein induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Infusion of HIV-1 gp120 induced neuroinflammation, such as the release of iNOS and COX-2 and the activation of astrocytes and microglia and increased the mRNA and protein levels of IL-6, ICAM-1, M-CSF, TIM, and IL-2. In particular, we found that the infusion of HIV-1 gp120 induced the accumulation of amyloid plaques and signs of elevated amyloidogenesis, such as increased expression of amyloid precursor protein and BACE1 and increased β-secretase activity. Therefore, these studies suggest that HIV-1 gp120 may induce memory impairment through Aβ accumulation and neuroinflammation.


2021 ◽  
Vol 12 (1) ◽  
pp. 513-522
Author(s):  
Christina Nilofer ◽  
Arumugam Mohanapriya

The Human Immunodeficiency Virus (HIV-1) type 1 viral protein is a life threatening virus causing HIV/AIDS in infected humans. The HIV-1 envelope (ENV) trimer glycoprotein GP160 (GP120-GP41) is gaining attention in recent years as a potential vaccine candidate for HIV-1/AIDS. However, the sequence variation and charge polarity at the interacting sites across clades is a shortcoming faced in the development of an effective HIV-1 vaccine. We analyzed the interfaces in terms of its interface area, interface size, and interface energies (van der Waals, hydrogen bonds, and electrostatics). The interfaces were divided as dominant (≥60%) and subdominant (<60%) based on van der Waals contribution to total energies. 88% of GP120 and 74% of GP41 interfaces are highly pronounced with van der Waals energy having large interfaces with interface size (98±65 (GP120) and 73±65 (GP41)) and interface area (882±1166Å2 (GP120) and 921±1288Å2 (GP41)). Nevertheless, 12% of GP120 and 26% of GP41 interfaces have subdominant van der Waals energies having small interfaces with interface size (58±20 (GP120) and 27±9 (GP41)) and interface area (581±1605Å2 (GP120) and 483±896Å2 (GP41)). It was interesting to observe GP41 small interfaces with subdominant van der Waals are stabilized by electrostatics (r2=0.63) without hydrogen bonds (r2=0). However, GP120 small interfaces were found to have two fold more hydrogen bonds (r2=0.59) than electrostatics (r2=0.20). Therefore, our previous finding stating that small protein-protein interfaces rich in electrostatics holds true in case of GP41 whereas not with GP120 protein interfaces.


2020 ◽  
Author(s):  
Jenny Shrestha ◽  
Maryline Santerre ◽  
Charles NS Allen ◽  
Sterling P Arjona ◽  
Ruma Mukerjee ◽  
...  

SUMMARYHIV-associated neurocognitive disorders (HAND) remains an unsolved problem in the clinical management of HIV-1 carriers, because existing anti-retroviral therapy while suppressing viral replication, do not prevent neurocognitive impairment (e.g. spatial memory loss). HIV-1 gp120 protein has been proposed to contribute to HAND because it is shed by infected cells and the use of antibodies revealed its presence in cerebrospinal fluid (CSF) even in the combinatory antiretroviral therapy (cART) era. The cyclic AMP response element-binding protein (CREB) has long been known to be a star player in memory. CREB exerts its effect partially through regulating the genes for peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and brain-derived neurotrophic factor (BDNF). CREB, PGC-1α, and BDNF levels are low in the brains of patients with neurodegenerative diseases and a dearth of either protein is associated with cognitive decline. We have obtained data showing that gp120 contributes to neurodegeneration by altering CREB phosphorylation on serine residue 133 thus disrupting mitochondrial movement and synaptic plasticity leading to spatial memory loss. Inhibition of CREB function was also associated with a decrease of ATP levels and lower mitochondrial DNA copy numbers. Our data was validated in vitro (primary mouse neurons and neuronal cell line, SH-SY5Y) and in vivo (gp120-tg mice and mice injected with gp120). The negative effect of gp120 was alleviated in cells and animals in the presence of Rolipram. Hence, we conclude that HIV-1 gp120 protein contributes to spatial memory impairment via inhibition of CREB protein activity.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Thomas Musich ◽  
Vishal Thovarai ◽  
David J. Venzon ◽  
Venkatramanan Mohanram ◽  
Iskra Tuero ◽  
...  

ABSTRACT An efficacious human immunodeficiency virus (HIV) vaccine will likely require induction of both mucosal and systemic immune responses. We compared the immunogenicity and protective efficacy of two mucosal/systemic vaccine regimens and investigated their effects on the rectal microbiome. Rhesus macaques were primed twice mucosally with replication-competent adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinants and boosted twice intramuscularly with ALVAC-SIV recombinant plus SIV gp120 protein or with DNA for SIV genes and rhesus interleukin-12 plus SIV gp120 protein. Controls received empty Ad5hr vector and alum adjuvant only. Both regimens elicited strong, comparable mucosal and systemic cellular and humoral immunity. Prevaccination rectal microbiomes of males and females differed and significantly changed over the course of immunization, most strongly in females after Ad5hr immunizations. Following repeated low-dose intrarectal SIV challenges, both vaccine groups exhibited modestly but significantly reduced acute viremia. Male and female controls exhibited similar acute viral loads; however, vaccinated females, but not males, exhibited lower levels of acute viremia, compared to same-sex controls. Few differences in adaptive immune responses were observed between the sexes. Striking differences in correlations of the rectal microbiome of males and females with acute viremia and immune responses associated with protection were seen and point to effects of the microbiome on vaccine-induced immunity and viremia control. Our study clearly demonstrates direct effects of a mucosal SIV vaccine regimen on the rectal microbiome and validates our previously reported SIV vaccine-induced sex bias. Sex and the microbiome are critical factors that should not be overlooked in vaccine design and evaluation. IMPORTANCE Differences in HIV pathogenesis between males and females, including immunity postinfection, have been well documented, as have steroid hormone effects on the microbiome, which is known to influence mucosal immune responses. Few studies have applied this knowledge to vaccine trials. We investigated two SIV vaccine regimens combining mucosal priming immunizations and systemic protein boosting. We again report a vaccine-induced sex bias, with female rhesus macaques but not males displaying significantly reduced acute viremia. The vaccine regimens, especially the mucosal primes, significantly altered the rectal microbiome. The greatest effects were in females. Striking differences between female and male macaques in correlations of prevalent rectal bacteria with viral loads and potentially protective immune responses were observed. Effects of the microbiome on vaccine-induced immunity and viremia control require further study by microbiome transfer. However, the findings presented highlight the critical importance of considering effects of sex and the microbiome in vaccine design and evaluation.


2020 ◽  
Author(s):  
Nitesh Mishra ◽  
Ayushman Dobhal ◽  
Shaifali Sharma ◽  
Kalpana Luthra

AbstractThe trimeric envelope glycoprotein (gp120/gp41)3 of human immunodeficiency virus-1 (HIV-1) mediates viral and host cell membrane fusion, initiated by binding of viral envelope gp120 protein to the CD4 receptor on host immune cells. Functional env genes from infected individuals have been widely used as templates for vaccine design, for setting up viral neutralization assays and to study the viral evolution and pathogenesis. Traditional topoisomerase or T4 DNA polymerase mediated approaches for cloning single genome amplified (SGA) env genes are labor-intensive, cost-ineffective with low-throughput, thereby enabling functional analysis of only a limited number of env genes from the diverse circulating quasispecies in infected individuals. Herein, we report an efficient, easy to optimize and high-throughput approach for cloning diverse HIV-1 env genes. Multiple env/rev gene cassettes, derived from infected infants, were subjected to SGA using Phusion polymerase and utilized as megaprimers in overlap extension PCR mediated cloning (OEC), circumventing the requirement for novel enzymes. Furthermore, utilization of Phusion polymerase for both the amplification of env/rev cassettes and OEC allows convenient monitoring and optimization, thereby providing much greater flexibility and versatility for analysis of env genes from HIV-1 infected individuals.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. Giel-Moloney ◽  
M. Esteban ◽  
B. H. Oakes ◽  
M. Vaine ◽  
B. Asbach ◽  
...  

AbstractMultiple approaches utilizing viral and DNA vectors have shown promise in the development of an effective vaccine against HIV. In this study, an alternative replication-defective flavivirus vector, RepliVax (RV), was evaluated for the delivery of HIV-1 immunogens. Recombinant RV-HIV viruses were engineered to stably express clade C virus Gag and Env (gp120TM) proteins and propagated in Vero helper cells. RV-based vectors enabled efficient expression and correct maturation of Gag and gp120TM proteins, were apathogenic in a sensitive suckling mouse neurovirulence test, and were similar in immunogenicity to recombinant poxvirus NYVAC-HIV vectors in homologous or heterologous prime-boost combinations in mice. In a pilot NHP study, immunogenicity of RV-HIV viruses used as a prime or boost for DNA or NYVAC candidates was compared to a DNA prime/NYVAC boost benchmark scheme when administered together with adjuvanted gp120 protein. Similar neutralizing antibody titers, binding IgG titers measured against a broad panel of Env and Gag antigens, and ADCC responses were observed in the groups throughout the course of the study, and T cell responses were elicited. The entire data demonstrate that RV vectors have the potential as novel HIV-1 vaccine components for use in combination with other promising candidates to develop new effective vaccination strategies.


Author(s):  
A.M. Andrianov ◽  
G.I. Nikolaev ◽  
Y.V. Kornoushenko ◽  
J. Huang ◽  
S. Jiang ◽  
...  

Six potential peptidomimetics of the cross-reactive neutralizing anti-HIV-1 antibody N6 that are able to mimic the pharmacophoric features of this immunoglobulin by specific and effective interactions with the CD4-binding site of the viral gp120 protein were identified by virtual screening and molecular modeling. The key role in the interaction of these compounds with gp120 is shown to play multiple van der Waals contacts with conserved residues of the gp120 Phe-43 cavity critical for the HIV binding to cellular receptor CD4, as well as hydrogen bond with Asp-368gp120 that increase the chemical affinity without activating unwanted allosteric effect. According to the data of molecular dynamics, the complexes of the identified ligands with gp120 are energetically stable and show the lower values of binding free energy compared with the HIV-1 inhibitors NBD-11021 and DMJ-II-121 used in the calculations as a positive control. Based on the data obtained, it was concluded that the identified compounds may be considered as promising candidates for detailed experimental studies to their further use in the design of novel antiviral drugs presenting HIV-1 inhibitors that block the early stages of the development of HIV infection.


Author(s):  
Alexander M. Andrianov ◽  
Gregory I. Nikolaev ◽  
Yuri V. Kornoushenko ◽  
Jinghe Huang ◽  
Shibo Jiang ◽  
...  

Six potential peptidomimetics of the cross-reactive neutralizing anti-HIV-1 antibody N6 that are able to mimic the pharmacophoric features of this immunoglobulin by specific and effective interactions with the CD4-binding site of the viral gp120 protein were identified by virtual screening and molecular modeling. The key role in the interaction of these compounds with gp120 is shown to play multiple van der Waals contacts with conserved residues of the gp120 Phe43 cavity critical for the HIV binding to cellular receptor CD4, as well as hydrogen bonds with Asp-368gp120 that increase the chemical affinity without activating unwanted allosteric effect. According to the data of molecular dynamics, the complexes of the identified ligands with gp120 are energetically stable and show the lower values of binding free energy compared with the HIV-1 inhibitors NBD-11021 and DMJ-II-121 used in the calculations as a positive control. The identified compounds may be involved in the design of novel antiviral drugs presenting HIV-1 inhibitors that block the early stages of the development of HIV infection.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 746 ◽  
Author(s):  
Alexander M. Andrianov ◽  
Grigory I. Nikolaev ◽  
Yuri V. Kornoushenko ◽  
Wei Xu ◽  
Shibo Jiang ◽  
...  

Despite recent progress in the development of novel potent HIV-1 entry/fusion inhibitors, there are currently no licensed antiviral drugs based on inhibiting the critical interactions of the HIV-1 envelope gp120 protein with cellular receptor CD4. In this connection, studies on the design of new small-molecule compounds able to block the gp120-CD4 binding are still of great value. In this work, in silico design of drug-like compounds containing the moieties that make the ligand active towards gp120 was performed within the concept of click chemistry. Complexes of the designed molecules bound to gp120 were then generated by molecular docking and optimized using semiempirical quantum chemical method PM7. Finally, the binding affinity analysis of these ligand/gp120 complexes was performed by molecular dynamic simulations and binding free energy calculations. As a result, five top-ranking compounds that mimic the key interactions of CD4 with gp120 and show the high binding affinity were identified as the most promising CD4-mimemic candidates. Taken together, the data obtained suggest that these compounds may serve as promising scaffolds for the development of novel, highly potent and broad anti-HIV-1 therapeutics.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Saritza Santos ◽  
Maité Ramírez ◽  
Eric Miranda ◽  
Nelson Reyes ◽  
Osmarie Martínez ◽  
...  

Immunogenicity of DNA vaccines can be efficiently improved by adding adjuvants into their formulations. In this regard, the application of nano- and microparticles as vaccines adjuvants, or delivery systems, provides a powerful tool in designing modern vaccines. In the present study, we examined the role of “Supramolecular Hacky Sacks” (SHS) particles, made via the hierarchical self-assembly of a guanosine derivative, as a novel immunomodulator for DNA plasmid preparations. These plasmids code for the proteins HIV-1 Gag (pGag), the wild-type vaccinia virus Western Reserve A27 (pA27L), or a codon-optimized version of the latter (pOD1A27Lopt), which is also linked to the sequence of the outer domain-1 (OD1) from HIV-1 gp120 protein. We evaluated the enhancement of the immune responses generated by our DNA plasmid formulations in a murine model through ELISpot and ELISA assays. The SHS particles increased the frequencies of IFN-γ-producing cells in mice independently immunized with pGag and pA27L plasmids. Moreover, the addition of SHS to pGag and pA27L DNA plasmid formulations enhanced the production of IFN-γ(Th1-type) over IL-4 (Th2-type) cellular immune responses. Furthermore, pGag and pA27L plasmids formulated with SHS, triggered the production of antigen-specific IgG in mice, especially the IgG2a isotype. However, no improvement of either of those adaptive immune responses was observed in mice receiving pOD1A27Lopt+SHS. Here, we demonstrated that SHS particles have the ability to improve both arms of adaptive immunity of plasmid coding “wild-type” antigens without additional strategies to boost their immunogenicity. To the best of our knowledge, this is the first report of SHS guanosine-based particles as DNA plasmid adjuvants.


Sign in / Sign up

Export Citation Format

Share Document