entry efficiency
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jie Hu ◽  
Pai Peng ◽  
Kang Wu ◽  
Quan-xin Long ◽  
Juan Chen ◽  
...  

A new detected SARS-CoV-2 variant Omicron (B.1.1.529) had reported from more than 80 countries. In the past few weeks, a new wave of infection driven by Omicron is in progress. Omicron Spike (S) protein pseudotyped virus was used to determine the effect of S mutations on its capacity of infectivity and immune evasion. Our results showed the lower entry efficiency and less cleavage ability of Omicron than D614G variant. Pseudotype-based neutralizing assay was performed to analyze neutralizing antibodies elicited by previously infection or the RBD-based protein subunit vaccine ZF2001 against the Omicron variant. Sera sampled at around one month after symptom onset from 12 convalescents who were previously infected by SARS-CoV-2 original strain shows a more than 20-fold decrease of neutralizing activity against Omicron variant, when compared to D614G variant. Among 12 individuals vaccinated by RBD subunit vaccine, 58.3% (7/12) sera sampled at 15-60 days after 3rd-dose vaccination did not neutralize Omicron. Geometric mean titers (GMTs, 50% inhibitory dose [ID50]) of these sera against Omicron were 9.4-fold lower than against D614G. These results suggested a higher risk of Omicron breakthrough infections and reduced efficiency of the protective immunity elicited by existing vaccines. There are important implications about the modification and optimization of the current epidemic prevention and control including vaccine strategies and therapeutic antibodies against Omicron variant.


Biomaterials ◽  
2021 ◽  
Vol 278 ◽  
pp. 121139
Author(s):  
Man-Di Wang ◽  
Da-Yong Hou ◽  
Gan-Tian Lv ◽  
Ru-Xiang Li ◽  
Xing-Jie Hu ◽  
...  

2021 ◽  
Author(s):  
Wenlin Ren ◽  
Xiaohui Ju ◽  
Mingli Gong ◽  
Jun Lan ◽  
Yanying Yu ◽  
...  

ABSTRACTRecently, highly transmissible SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta) and B.1.618 were identified in India with mutations within the spike proteins. The spike protein of Kappa contains four mutations E154K, L452R, E484Q and P681R, and Delta contains L452R, T478K and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have altered in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta or B.1.618 spike uses human ACE2 with no or slightly increased efficiency, while gains a significantly increased binding affinity with mouse, marmoset and koala ACE2 orthologs, which exhibits limited binding with WT spike. Furthermore, the P618R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta and B.1.618 exhibits a reduced sensitivity to neutralization by convalescent sera owning to the mutation of E484Q, T478K, Δ145-146 or E484K, but remains sensitive to entry inhibitors-ACE2-lg decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants and expanded host range. Furthermore, our result also highlighted that ACE2-lg could be developed as broad-spectrum antiviral strategy against SARS-CoV-2 variants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seiya Ozono ◽  
Yanzhao Zhang ◽  
Hirotaka Ode ◽  
Kaori Sano ◽  
Toong Seng Tan ◽  
...  

AbstractThe causative agent of the COVID-19 pandemic, SARS-CoV-2, is steadily mutating during continuous transmission among humans. Such mutations can occur in the spike (S) protein that binds to the ACE2 receptor and is cleaved by TMPRSS2. However, whether S mutations affect SARS-CoV-2 cell entry remains unknown. Here, we show that naturally occurring S mutations can reduce or enhance cell entry via ACE2 and TMPRSS2. A SARS-CoV-2 S-pseudotyped lentivirus exhibits substantially lower entry than that of SARS-CoV S. Among S variants, the D614G mutant shows the highest cell entry, as supported by structural and binding analyses. Nevertheless, the D614G mutation does not affect neutralization by antisera against prototypic viruses. Taken together, we conclude that the D614G mutation increases cell entry by acquiring higher affinity to ACE2 while maintaining neutralization susceptibility. Based on these findings, further worldwide surveillance is required to understand SARS-CoV-2 transmissibility among humans.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 275
Author(s):  
Filipe Romão ◽  
Ana L. Quaresma ◽  
José M. Santos ◽  
Susana D. Amaral ◽  
Paulo Branco ◽  
...  

Pool-type fishways have been increasingly tested to improve fish passage performance and minimize migration delays. Designing cost-effective fishways is essential for a trade-off between water uses and successful longitudinal connectivity restoration. The multislot fishway (MSF) concept, which operates with 30–50% lower discharge than a vertical slot fishway (VSF), was recently developed. This study assessed and compared the entrance performance (entrance time; entry efficiency) and transit times of two cyprinids for VSFs and MSFs. Four configurations, with the same structural characteristics (slope; water depth; head drop; pool width and depth), operating with different discharges (Q), were tested (VSF 1: Q = 112 L·s−1; VSF 2: Q = 80 L·s−1; MSF 1: Q = 58 L·s−1; MSF 2: Q = 37 L·s−1). Hydrodynamics characterization was performed using a numerical model. Results showed that entry efficiency was higher in MSFs than in VSFs, while entrance time and transit time were overall lower. Numerical modelling revealed that velocities were around 30% lower in MSFs, and turbulence could reach a difference of around 70% in Reynolds shear stress and 50% in turbulent kinetic energy. Overall, MSFs can be considered as a cost-effective fishway solution that can balance the trade-offs between divergent interests in water uses.


Author(s):  
Shrikant Salve ◽  
Ganesh Bhutkar ◽  
Pradeep Yammiyavar
Keyword(s):  

2020 ◽  
Vol 16 (12) ◽  
pp. e1008461
Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra M. Dixit

The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.


Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra Dixit

<p>The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry <i>in vitro</i>. This blockade may be achieved <i>in vivo</i> through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics <i>in vitro</i>. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available <i>in vitro</i> data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways <i>in vivo</i> may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry. <br></p>


2020 ◽  
Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra Dixit

<p>The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry <i>in vitro</i>. This blockade may be achieved <i>in vivo</i> through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics <i>in vitro</i>. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available <i>in vitro</i> data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways <i>in vivo</i> may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry. <br></p>


Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra Dixit

<p>The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry <i>in vitro</i>. This blockade may be achieved <i>in vivo</i> through ‘repurposing’ existing drugs and offers a potential treatment option for COVID-19, currently in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics <i>in vitro</i>. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. We showed, analysing our model, that the synergy was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, we found that available <i>in vitro</i> data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Exploiting the synergy may improve the deployability of drug combinations targeting host proteases required for SARS-CoV-2 entry. </p>


Sign in / Sign up

Export Citation Format

Share Document