scholarly journals Inhibition of Human Immunodeficiency Virus Type 1 Integration by Diketo Derivatives

2002 ◽  
Vol 46 (10) ◽  
pp. 3292-3297 ◽  
Author(s):  
Wim Pluymers ◽  
Godwin Pais ◽  
Bénédicte Van Maele ◽  
Christophe Pannecouque ◽  
Valery Fikkert ◽  
...  

ABSTRACT A series of diketo derivatives was found to inhibit human immunodeficiency virus type 1 (HIV-1) integrase activity. Only L-708,906 inhibited the replication of HIV-1(IIIB) (50% effective concentration, 12 μM), HIV-1 clinical strains, HIV-1 strains resistant to reverse transcriptase or fusion inhibitors, HIV-2 (ROD strain) and simian immunodeficiency virus (MAC251). The combinations of L-708,906 with zidovudine, nevirapine, or nelfinavir proved to be subsynergistic. In cell culture, addition of L-708,906 could be postponed for 7 h after infection, a moment coinciding with HIV integration. Inhibition of integration in cell culture was confirmed by quantitative Alu-PCR.

2007 ◽  
Vol 81 (12) ◽  
pp. 6563-6572 ◽  
Author(s):  
Raghavan Chinnadurai ◽  
Devi Rajan ◽  
Jan Münch ◽  
Frank Kirchhoff

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing ∼10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.


2004 ◽  
Vol 48 (11) ◽  
pp. 4349-4359 ◽  
Author(s):  
Shibo Jiang ◽  
Hong Lu ◽  
Shuwen Liu ◽  
Qian Zhao ◽  
Yuxian He ◽  
...  

ABSTRACT A recently approved peptidic human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, T-20 (Fuzeon; Trimeris Inc.), has shown significant promise in clinical application for treating HIV-1-infected individuals who have failed to respond to the currently available antiretroviral drugs. However, T-20 must be injected twice daily and is too expensive. Therefore, it is essential to develop orally available small molecule HIV-1 fusion inhibitors. By screening a chemical library consisting of “drug-like” compounds, we identified two N-substituted pyrroles, designated NB-2 and NB-64, that inhibited HIV-1 replication at a low micromolar range. The absence of the COOH group in NB-2 and NB-64 resulted in a loss of anti-HIV-1 activity, suggesting that this acid group plays an important role in mediating the antiviral activity. NB-2 and NB-64 inhibited HIV-1 fusion and entry by interfering with the gp41 six-helix bundle formation and disrupting the α-helical conformation. They blocked a d-peptide binding to the hydrophobic pocket on surface of the gp41 internal trimeric coiled-coil domain. Computer-aided molecular docking analysis has shown that they fit inside the hydrophobic pocket and that their COOH group interacts with a positively charged residue (K574) around the pocket to form a salt bridge. These results suggest that NB-2 and NB-64 may bind to the gp41 hydrophobic pocket through hydrophobic and ionic interactions and block the formation of the fusion-active gp41 core, thereby inhibiting HIV-1-mediated membrane fusion and virus entry. Therefore, NB-2 and NB-64 can be used as lead compounds toward designing and developing more potent small molecule HIV-1 fusion inhibitors targeting gp41.


2016 ◽  
Vol 71 (5-6) ◽  
pp. 105-109 ◽  
Author(s):  
Zhiping Che ◽  
Yuee Tian ◽  
Zhenjie Hu ◽  
Yingwu Chen ◽  
Shengming Liu ◽  
...  

Abstract Fifteen N-arylsulfonyl-3-propionylindoles (3a–o) were prepared and preliminarily evaluated as in vitro inhibitors of human immunodeficiency virus type-1 (HIV-1). Three compounds 3c, 3g and 3i exhibited potent anti-HIV-1 activity with effective concentration (EC50) values of 0.8, 4.0 and 1.2 μg/mL, and therapeutic index (TI) values of 11.7, 16.6 and 84.1, respectively. N-(m-Nitro)phenylsulfonyl-3-propionyl-6-methylindole (3i) exhibited the most promising and best activity against HIV-1 replication. The cytotoxicity of these compounds was assessed as well.


2008 ◽  
Vol 82 (13) ◽  
pp. 6349-6358 ◽  
Author(s):  
Yuxian He ◽  
Jianwei Cheng ◽  
Jingjing Li ◽  
Zhi Qi ◽  
Hong Lu ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif (621QIWNNMT627) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD (628WMEWEREI635). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the 621QIWNNMT627 motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T m ] value of 82°C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T m of 64°C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.


2006 ◽  
Vol 80 (22) ◽  
pp. 11019-11030 ◽  
Author(s):  
Eric G. Meissner ◽  
Liguo Zhang ◽  
S. Jiang ◽  
Lishan Su

ABSTRACT The mechanisms of CD4+ T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection remain incompletely characterized. Of particular importance is how CD4+ T cells are depleted within the lymphoid organs, including the lymph nodes and thymus. Herein we characterize the pathogenic mechanisms of an envelope from a rapid progressor (R3A Env) in the NL4-3 backbone (NL4-R3A) which is able to efficiently replicate and deplete CD4+ thymocytes in the human fetal-thymus organ culture (HF-TOC). We demonstrate that uninterrupted replication is required for continual thymocyte depletion. During depletion, NL4-R3A induces an increase in thymocytes which uptake 7AAD, a marker of cell death, and which express active caspase-3, a marker of apoptosis. While 7AAD uptake is observed predominantly in uninfected thymocytes (p24−), active caspase-3 is expressed in both infected (p24+) and uninfected thymocytes (p24−). When added to HF-TOC with ongoing infection, the protease inhibitor saquinavir efficiently suppresses NL4-R3A replication. In contrast, the fusion inhibitors T20 and C34 allow for sustained HIV-1 production. Interestingly, T20 and C34 effectively prevent thymocyte depletion in spite of this sustained replication. Apoptosis of both p24− and p24+ thymocytes appears to be envelope fusion dependent, as T20, but not saquinavir, is capable of reducing thymocyte apoptosis. Together, our data support a model whereby pathogenic envelope-dependent fusion contributes to thymocyte depletion in HIV-1-infected thymus, correlated with induction of apoptosis in both p24+ and p24− thymocytes.


2005 ◽  
Vol 49 (6) ◽  
pp. 2314-2321 ◽  
Author(s):  
Sandra De Meyer ◽  
Hilde Azijn ◽  
Dominique Surleraux ◽  
Dirk Jochmans ◽  
Abdellah Tahri ◽  
...  

ABSTRACT The purpose of this study was to characterize the antiviral activity, cytotoxicity, and mechanism of action of TMC114, a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI). TMC114 exhibited potent anti-HIV activity with a 50% effective concentration (EC50) of 1 to 5 nM and a 90% effective concentration of 2.7 to 13 nM. TMC114 exhibited no cytotoxicity at concentrations up to 100 μM (selectivity index, >20,000). All viruses in a panel of 19 recombinant clinical isolates carrying multiple protease mutations and demonstrating resistance to an average of five other PIs, were susceptible to TMC114, defined as a fold change in EC50 of <4. TMC114 was also effective against the majority of 1,501 PI-resistant recombinant viruses derived from recent clinical samples, with EC50s of <10 nM for 75% of the samples. In sequential passage experiments using HIV-1 LAI, two mutations (R41T and K70E) were selected. One selected virus showed a 10-fold reduction in susceptibility to TMC114, but <10-fold reductions in susceptibility to the current PIs (atazanavir was not assessed), except saquinavir. However, when the selected mutations were introduced into a laboratory strain by site-directed mutagenesis, they had no effect on susceptibility to TMC114 or other PIs. There was no evidence of antagonism between TMC114 and any currently available PIs or reverse transcriptase inhibitors. Combinations with ritonavir, nelfinavir, and amprenavir showed some evidence of synergy. These results suggest that TMC114 is a potential candidate for the treatment of both naïve and PI-experienced patients with HIV.


2001 ◽  
Vol 45 (9) ◽  
pp. 2510-2516 ◽  
Author(s):  
Nick Vandegraaff ◽  
Raman Kumar ◽  
Helen Hocking ◽  
Terrence R. Burke ◽  
John Mills ◽  
...  

ABSTRACT To study the effect of potential human immunodeficiency virus type 1 (HIV-1) integrase inhibitors during virus replication in cell culture, we used a modified nested Alu-PCR assay to quantify integrated HIV DNA in combination with the quantitative analysis of extrachromosomal HIV DNA. The two diketo acid integrase inhibitors (L-708,906 and L-731,988) blocked the accumulation of integrated HIV-1 DNA in T cells following infection but did not alter levels of newly synthesized extrachromosomal HIV DNA. In contrast, we demonstrated that L17 (a member of the bisaroyl hydrazine family of integrase inhibitors) and AR177 (an oligonucleotide inhibitor) blocked the HIV replication cycle at, or prior to, reverse transcription, although both drugs inhibited integrase activity in cell-free assays. Quercetin dihydrate (a flavone) was shown to not have any antiviral activity in our system despite reported anti-integration properties in cell-free assays. This refined Alu-PCR assay for HIV provirus is a useful tool for screening anti-integration compounds identified in biochemical assays for their ability to inhibit the accumulation of integrated HIV DNA in cell culture, and it may be useful for studying the effects of these inhibitors in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document