scholarly journals In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus Isolates from Transplant and Nontransplant Patients

2004 ◽  
Vol 48 (12) ◽  
pp. 4922-4925 ◽  
Author(s):  
William J. Steinbach ◽  
Nina Singh ◽  
Jackie L. Miller ◽  
Daniel K. Benjamin ◽  
Wiley A. Schell ◽  
...  

ABSTRACT We performed in vitro antifungal checkerboard testing on 12 Aspergillus fumigatus clinical isolates (6 transplant recipients and 6 nontransplant patients) with three antifungal agents (amphotericin B, voriconazole, and caspofungin) and three immunosuppressants (FK506, cyclosporine, and rapamycin). We were not able to detect a difference in calcineurin inhibitor antifungal activity against isolates from transplant recipients and nontransplant patients.

2015 ◽  
Vol 59 (11) ◽  
pp. 7097-7099 ◽  
Author(s):  
Lujuan Gao ◽  
Yi Sun

ABSTRACTAspergillusbiofilms were prepared fromAspergillus fumigatus,Aspergillus flavus, andAspergillus terreusvia a 96-well plate-based method, and the combined antifungal activity of tacrolimus with azoles or amphotericin B againstAspergillusbiofilms was investigated via a broth microdilution checkerboard technique system. Our results suggest that combinations of tacrolimus with voriconazole or amphotericin B have synergistic inhibitory activity againstAspergillusbiofilms. However, combinations of tacrolimus with itraconazole or posaconazole exhibit no synergistic or antagonistic effects.


2006 ◽  
Vol 5 (10) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. Arunmozhi Balajee ◽  
David Nickle ◽  
Janos Varga ◽  
Kieren A. Marr

ABSTRACT Aspergillus fumigatus has been understood to be the most common cause of invasive aspergillosis (IA) in all epidemiological surveys. However, recent studies have uncovered a large degree of genetic heterogeneity between isolates morphologically identified as A. fumigatus, leading to the description of a new species, Aspergillus lentulus. Here, we examined the genetic diversity of clinical isolates identified as A. fumigatus using restriction enzyme polymorphism analysis and sequence-based identification. Analysis of 50 clinical isolates from geographically diverse locations recorded the presence of at least three distinct species: A. lentulus, Aspergillus udagawae, and A. fumigatus. In vitro, A. lentulus isolates demonstrated decreased susceptibility to antifungal drugs currently used for IA, including amphotericin B, voriconazole, and caspofungin; A. udagawae isolates demonstrated decreased in vitro susceptibility to amphotericin B. Results of the present study demonstrate that current phenotypic methods to identify fungi do not differentiate between genetically distinct species in the A. fumigatus group. Differential antifungal susceptibilities of these species may account for some of the reported poor outcomes of therapy in clinical studies.


1998 ◽  
Vol 42 (4) ◽  
pp. 531-533 ◽  
Author(s):  
M. Cuenca-Estrella ◽  
J. L. Rodriguez-Tudela ◽  
E. Mellado ◽  
J. V. Martinez-Suarez ◽  
A. Monzon

2007 ◽  
Vol 51 (7) ◽  
pp. 2587-2590 ◽  
Author(s):  
Nikolaos G. Almyroudis ◽  
Deanna A. Sutton ◽  
Annette W. Fothergill ◽  
Michael G. Rinaldi ◽  
Shimon Kusne

ABSTRACT We evaluated the in vitro susceptibilities of 217 zygomycetes to amphotericin B, ketoconazole, fluconazole, itraconazole, voriconazole, posaconazole, caspofungin, and flucytosine. The significant in vitro activity of posaconazole against several species appears to support its reported clinical efficacy. Decreased susceptibility to amphotericin B was noted with Cunninghamella bertholletiae.


2003 ◽  
Vol 47 (7) ◽  
pp. 2339-2341 ◽  
Author(s):  
Manuel Cuenca-Estrella ◽  
Alicia Gomez-Lopez ◽  
Emilia Mellado ◽  
Maria J. Buitrago ◽  
Araceli Monzón ◽  
...  

ABSTRACT The antifungal susceptibility results for 32 clinical isolates of Scopulariopsis brevicaulis are presented. Flucytosine and itraconazole were inactive in vitro, and MICs of amphotericin B, voriconazole, and terbinafine for all isolates were high, with geometric means of 13, 25.8, and 14.4 μg/ml, respectively.


1996 ◽  
Vol 42 (9) ◽  
pp. 960-964 ◽  
Author(s):  
Elias K. Manavathu ◽  
George J. Alangaden ◽  
Stephen A. Lerner

The effects of inoculum size, medium, temperature, and duration of growth on the in vitro susceptibility testing of Aspergillus fumigatus were investigated using broth micro- and macro-dilution techniques. The minimum inhibitory concentrations (MICs) of ketoconazole, miconazole, itraconazole, fluconazole, and amphotericin B were significantly influenced by the inoculum size, regardless of the techniques used. Two- to four-fold higher MIC values were obtained when the inoculum size was increased 100-fold. The use of peptone yeast extract glucose and RPMI 1640 media provided essentially identical MIC values at 30 and 35 °C after incubation for 48 h or longer. A comparison of broth micro- and macro-dilution techniques revealed that, under equivalent conditions, the latter with an inoculum size between 1 × 103and 1 × 104conidia (strain W73355)/mL consistently provided the lowest MICs of fluconazole (256 μg/mL), ketoconazole (8 μg/mL), miconazole (2 μg/mL), itraconazole (0.25 μg/mL), and amphotericin B (0.25 μg/mL). Using the broth macrodilution technique, we screened 24 clinical isolates of A. fumigatus obtained from the Detroit Medical Center in 1994. The MIC values of fluconazole, ketoconazole, miconazole, itraconazole and amphotericin B for all the isolates were 128–256, 8–16, 1–2, 0.25–0.5, and 0.25–1.0 μg/mL, respectively, indicating that none of the clinical isolates that we tested shows acquired resistance to the antifungals used.Key words: Aspergillus fumigatus, susceptibility test, antifungals, drug resistance, broth macrodilution.


2001 ◽  
Vol 43 (5) ◽  
pp. 267-270 ◽  
Author(s):  
Sydney Hartz ALVES ◽  
Loiva T. OLIVEIRA ◽  
Jane M. COSTA ◽  
Irina LUBECK ◽  
Agnes Kiesling CASALI ◽  
...  

The purpose of the present study was to compare the susceptibility to four antifungal agents of 69 Cryptococcus neoformans strains isolated from AIDS patients with that of 13 C. neoformans strains isolated from the environment. Based on the NCCLS M27-A methodology the Minimal Inhibitory Concentrations (MICs) obtained for amphotericin B, itraconazole and ketoconazole were very similar for clinical and environmental isolates. Clinical isolates were less susceptible to fluconazole than environmental isolates. The significance of these findings and aspects concerning the importance, role and difficulties of C. neoformans susceptibility testing are also discussed.


2006 ◽  
Vol 50 (6) ◽  
pp. 2248-2250 ◽  
Author(s):  
Manuel Cuenca-Estrella ◽  
Alicia Gomez-Lopez ◽  
Maria J. Buitrago ◽  
Emilia Mellado ◽  
Guillermo Garcia-Effron ◽  
...  

ABSTRACT The activities of 10 combinations of antifungal agents against 25 clinical isolates of Scopulariopsis brevicaulis were tested by the checkerboard technique. An average indifferent effect was detected for all combinations. Synergy was observed for some isolates and combinations, particularly with posaconazole-terbinafine (68% of strains), amphotericin B-caspofungin (60%), and posaconazole-caspofungin (48%).


2019 ◽  
Vol 184 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Tatiana Borba Spader ◽  
Mauricio Ramírez-Castrillón ◽  
Patricia Valente ◽  
Sydney Hartz Alves ◽  
Luiz Carlos Severo

1997 ◽  
Vol 41 (2) ◽  
pp. 233-235 ◽  
Author(s):  
M A Pfaller ◽  
S Messer ◽  
R N Jones

Sch 56592 is a new triazole agent with potent, broad-spectrum antifungal activity. The in vitro activities of Sch 56592, itraconazole, fluconazole, amphotericin B, and flucytosine (5-FC) against 404 clinical isolates of Candida spp. (382 isolates) and Saccharomyces cerevisiae (22 isolates) were investigated. In vitro susceptibility testing was performed by a broth microdilution method performed according to National Committee for Clinical Laboratory Standards guidelines. Overall, Sch 56592 was very active (MIC at which 90% of isolates are inhibited [MIC90], 0.5 microgram/ml) against these yeast isolates. Sch 56592 was most active against Candida tropicalis, Candida parapsilosis, candida lusitaniae, and Candida stellatoidea (MIC90, < or = 0.12 microgram/ml) and was least active against Candida glabrata (MIC90, 2.0 micrograms/ml). Sch 56592 was 2- to 32-fold more active than amphotericin B and 5-FC against all species except C. glabrata. By comparison with the other triazoles, Sch 56592 was equivalent to itraconazole and greater than or equal to eightfold more active than fluconazole. On the basis of these results, Sch 56592 has promising antifungal activity, and further in vitro and in vivo investigations are warranted.


Sign in / Sign up

Export Citation Format

Share Document