scholarly journals The K101P and K103R/V179D Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confer Resistance to Nonnucleoside Reverse Transcriptase Inhibitors

2006 ◽  
Vol 50 (1) ◽  
pp. 351-354 ◽  
Author(s):  
Neil T. Parkin ◽  
Soumi Gupta ◽  
Colombe Chappey ◽  
Christos J. Petropoulos

ABSTRACT Genotypic patterns associated with nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance in the absence of well-characterized resistance mutations were identified using a database (n > 47,000) of phenotype-genotype data. Among samples with no known NNRTI mutations, the most resistant samples contained K101P (n = 35) or a combination of K103R and V179D (n = 41). Site-directed mutagenesis confirmed the importance of these mutations.

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Nicholas S. Giacobbi ◽  
Nicolas Sluis-Cremer

ABSTRACT Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C.


2019 ◽  
Vol 9 (2) ◽  
pp. 261-264
Author(s):  
Nikki Higa ◽  
Amy Pelz ◽  
Donald Birch ◽  
Ingrid A Beck ◽  
Tatiana Sils ◽  
...  

Abstract Among 66 antiretroviral-naive children aged <3 years with human immunodeficiency virus (HIV) or coinfected with HIV and tuberculosis and initiating efavirenz-based antiretroviral therapy (ART), non–nucleoside reverse transcriptase inhibitor (NNRTI) resistance was detected before ART in 5 (7.6%). Virologic failure occurred in 2 of these children; they were last tested at 16 and 24 weeks of ART. Pre-ART NNRTI resistance was not associated with virologic failure.


2006 ◽  
Vol 80 (9) ◽  
pp. 4440-4446 ◽  
Author(s):  
Mohammad M. Hossain ◽  
Michael A. Parniak

ABSTRACT The nonnucleoside reverse transcriptase inhibitor (NNRTI) UC781 is under development as a microbicide to prevent sexual transmission of the human immunodeficiency virus type 1 (HIV-1). However, NNRTI-resistant HIV-1 is increasingly prevalent in the infected population, and one of the concerns for NNRTI-based microbicides is that they will be ineffective against drug-resistant virus and may in fact selectively transmit NNRTI-resistant virus. We evaluated the microbicidal activity of UC781 against UC781-resistant (UCR), efavirenz-resistant (EFVR), and nevirapine-resistant (NVPR) strains in a variety of microbicide-relevant tests, including inactivation of cell-free virus, inhibition of cell-to-cell HIV-1 transmission, and the ability of UC781 pretreatment to protect cells from subsequent infection in the absence of exogenous drug. UC781 was 10- to 100-fold less effective against NNRTI-resistant HIV-1 compared to wild-type (wt) virus in each of these tests, with UC781 microbicidal activity against the various virus strains being wt ≥ NVPR > UCR ≥ EFVR. Breakthrough experiments using UC781-pretreated cells and mixtures of wt and NNRTI-resistant HIV-1 showed that UC781-pretreatment selected for NNRTI-resistant HIV-1. However, the efficacy of UC781 was dose dependent, and 25 μM UC781 provided essentially equivalent microbicidal activity against NNRTI-resistant and wt virus. The amount of UC781 in topical microbicide formulations under current development is approximately 100-fold greater than this concentration, so transmission of NNRTI-resistant virus may not be an issue at these microbicide formulation levels of UC781. Nonetheless, the reduced microbicidal activity of UC781 against NNRTI-resistant HIV-1 suggests that additional antiviral agents should be included in NNRTI-based microbicide formulations.


2012 ◽  
Vol 56 (6) ◽  
pp. 3324-3335 ◽  
Author(s):  
Meiqing Lu ◽  
Peter J. Felock ◽  
Vandna Munshi ◽  
Renee C. Hrin ◽  
Ying-Jie Wang ◽  
...  

ABSTRACTMK-6186 is a novel nonnucleoside reverse transcriptase inhibitor (NNRTI) which displays subnanomolar potency against wild-type (WT) virus and the two most prevalent NNRTI-resistant RT mutants (K103N and Y181C) in biochemical assays. In addition, it showed excellent antiviral potency against K103N and Y181C mutant viruses, with fold changes (FCs) of less than 2 and 5, respectively. When a panel of 12 common NNRTI-associated mutant viruses was tested with MK-6186, only 2 relatively rare mutants (Y188L and V106I/Y188L) were highly resistant, with FCs of >100, and the remaining viruses showed FCs of <10. Furthermore, a panel of 96 clinical virus isolates with NNRTI resistance mutations was evaluated for susceptibility to NNRTIs. The majority (70%) of viruses tested displayed resistance to efavirenz (EFV), with FCs of >10, whereas only 29% of the mutant viruses displayed greater than 10-fold resistance to MK-6186. To determine whether MK-6186 selects for novel resistance mutations,in vitroresistance selections were conducted with one isolate each from subtypes A, B, and C under low-multiplicity-of-infection (MOI) conditions. The results showed a unique mutation development pattern in which L234I was the first mutation to emerge in the majority of the experiments. In resistance selection under high-MOI conditions with subtype B virus, V106A was the dominant mutation detected in the breakthrough viruses. More importantly, mutant viruses selected by MK-6186 showed FCs of <10 against EFV or etravirine (ETR), and the mutant viruses containing mutations selected by EFV or ETR were sensitive to MK-6186 (FCs of <10).


2008 ◽  
Vol 53 (2) ◽  
pp. 487-495 ◽  
Author(s):  
P. Fletcher ◽  
S. Harman ◽  
H. Azijn ◽  
N. Armanasco ◽  
P. Manlow ◽  
...  

ABSTRACT Heterosexual transmission of human immunodeficiency virus (HIV) remains the major route of infection worldwide; thus, there is an urgent need for additional prevention strategies, particularly strategies that could be controlled by women, such as topical microbicides. Potential microbicide candidates must be both safe and effective. Using cellular and tissue explant models, we have evaluated the activity of the nonnucleoside reverse transcriptase inhibitor (NNRTI) dapivirine as a vaginal microbicide. In tissue compatibility studies, dapivirine was well tolerated by epithelial cells, T cells, macrophages, and cervical tissue explants. Dapivirine demonstrated potent dose-dependent inhibitory effects against a broad panel of HIV type 1 isolates from different clades. Furthermore, dapivirine demonstrated potent activity against a wide range of NNRTI-resistant isolates. In human cervical explant cultures, dapivirine was able not only to inhibit direct infection of mucosal tissue but also to prevent the dissemination of the virus by migratory cells. Activity was retained in the presence of semen or a cervical mucus simulant. Furthermore, dapivirine demonstrated prolonged inhibitory effects: it was able to prevent both localized and disseminated infection for as long as 6 days posttreatment. The prolonged protection observed following pretreatment of genital tissue and the lack of observable toxicity suggest that dapivirine has considerable promise as a potential microbicide candidate.


Sign in / Sign up

Export Citation Format

Share Document