nnrti resistance
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 12 (4) ◽  
pp. 847-861
Author(s):  
Raphael Z. Sangeda ◽  
Perpétua Gómes ◽  
Soo-Yon Rhee ◽  
Fausta Mosha ◽  
Ricardo J. Camacho ◽  
...  

As more HIV patients start combination antiretroviral therapy (cART), the emergence of HIV drug resistance (HIVDR) is inevitable. This will have consequences for the transmission of HIVDR, the success of ART, and the nature and trend of the epidemic. We recruited a cohort of 223 patients starting or continuing their first-line cART in Tanzania towards the end of the stavudine era in 2010. Patients were then followed for one year. Of those with a viral load test at baseline and follow-up time, 34% had a detectable viral load at the one-year endpoint. For 41 patients, protease and reverse transcriptase genotyping were successful. Eighteen samples were from cART-naïve patients, and 23 samples were taken under therapy either at baseline for cART-experienced patients or from follow-up samples for both cART–naïve and cART–experienced patients. The isolates were subtype A, followed by C and D in 41.5%, 22%, and 12.2% of the patients, respectively. No transmitted HIVDR was detected, as scored using the surveillance drug resistance mutations (DRMs) list. However, in 3 of the 18 samples from cART-naïve patients, the clinical Rega interpretation algorithm scored 44D or 138A as non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance-associated polymorphisms. The most observed nucleoside reverse transcriptase inhibitor (NRTI) mutation was 184V. The mutation was found in 16 patients, causing resistance to lamivudine and emtricitabine. Nineteen patients had NNRTI resistance mutations, the most common of which was 103N, observed in eight patients. These high levels of resistance call for regular drug resistance surveillance in Tanzania to inform the control of the emergence and transmission of HIVDR.


2021 ◽  
pp. 135965352110430
Author(s):  
Kaja Scheibe ◽  
Anna Urbańska ◽  
Paweł Jakubowski ◽  
Maria Hlebowicz ◽  
Monika Bociąga-Jasik ◽  
...  

Introduction Doravirine (DOR) is a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) that retains activity against common NNRTI resistance mutations. In this study, we aimed to investigate the prevalence of DOR resistance mutations compared with that of resistance mutations for other NNRTIs among HIV-1-infected treatment‐experienced and -naïve patients from Poland. Methods Resistance to DOR and other NNRTIs was assessed in two datasets: 1760 antiretroviral treatment-naïve HIV-1 patients and 200 treatment‐experienced patients. All 1960 sequences were derived from the patients using bulk sequencing. For resistance analyses, Stanford HIV drug resistance database scores were used. Results Overall, DOR resistance was present in 32 patients (1.62%), of whom 13 (0.74%) were naïve and 19 (9.50%) were treatment-experienced. The most common DOR resistance mutations observed among the naïve patients were A98G and K101E (0.2% each), and those among cART-experienced patients were L100I (2.0%), K101E, V108I, H221Y, and P225H (1.5% each). Furthermore, among the naïve patients, less common resistance to DOR (0.7%) compared with that to nevirapine (NVP) (2.1%; p = 0.0013) and rilpivirine (5.40%; p < 0.0001) was observed. For sequences obtained from treatment-experienced patients, the frequency of resistance to DOR (9.5%) was lower than that for efavirenz (25.5%; p < 0.0001) and NVP (26.0%; p < 0.0001). Conclusions The frequency of transmitted drug resistance to DOR is low, allowing for effective treatment of antiretroviral treatment-naïve patients and rapid treatment initiation. In cART-experienced patients, this agent remains an attractive NNRTI option with a higher genetic barrier to resistance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Julien Riou ◽  
Carole Dupont ◽  
Silvia Bertagnolio ◽  
Ravindra K. Gupta ◽  
Roger D. Kouyos ◽  
...  

Abstract Introduction The rise of HIV-1 drug resistance to non-nucleoside reverse-transcriptase inhibitors (NNRTI) threatens antiretroviral therapy's long-term success (ART). NNRTIs will remain an essential drug for the management of HIV-1 due to safety concerns associated with integrase inhibitors. We fitted a dynamic transmission model to historical data from 2000 to 2018 in nine countries of southern Africa to understand the mechanisms that have shaped the HIV-1 epidemic and the rise of pretreatment NNRTI resistance. Methods We included data on HIV-1 prevalence, ART coverage, HIV-related mortality, and survey data on pretreatment NNRTI resistance from nine southern Africa countries from a systematic review, UNAIDS and World Bank. Using a Bayesian hierarchical framework, we developed a dynamic transmission model linking data on the HIV-1 epidemic to survey data on NNRTI drug resistance in each country. We estimated the proportion of resistance attributable to unregulated, off-programme use of ART. We examined each national ART programme's vulnerability to NNRTI resistance by defining a fragility index: the ratio of the rate of NNRTI resistance emergence during first-line ART over the rate of switching to second-line ART. We explored associations between fragility and characteristics of the health system of each country. Results The model reliably described the dynamics of the HIV-1 epidemic and NNRTI resistance in each country. Predicted levels of resistance in 2018 ranged between 3.3% (95% credible interval 1.9–7.1) in Mozambique and 25.3% (17.9–33.8) in Eswatini. The proportion of pretreatment NNRTI resistance attributable to unregulated antiretroviral use ranged from 6% (2–14) in Eswatini to 64% (26–85) in Mozambique. The fragility index was low in Botswana (0.01; 0.0–0.11) but high in Namibia (0.48; 0.16–10.17), Eswatini (0.64; 0.23–11.8) and South Africa (1.21; 0.83–9.84). The combination of high fragility of ART programmes and high ART coverage levels was associated with a sharp increase in pretreatment NNRTI resistance. Conclusions This comparison of nine countries shows that pretreatment NNRTI resistance can be controlled despite high ART coverage levels. This was the case in Botswana, Mozambique, and Zambia, most likely because of better HIV care delivery, including rapid switching to second-line ART of patients failing first-line ART.


2021 ◽  
Author(s):  
Kolin M Clark ◽  
Qiankun Wang ◽  
Liang Shan

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) induce pyroptosis of HIV-1 infected CD4+ T cells through induction of intracellular viral protease activation, which then activates the CARD8 inflammasome. Due to high concentrations of NNRTIs being required for efficient CARD8 activation and elimination of HIV-1-infected cells, it is important to elucidate ways to sensitize the CARD8 inflammasome to NNRTI-induced activation. We show that this sensitization can be done through chemical inhibition of the CARD8 negative regulator DPP9. DPP9 inhibitor Val-boroPro (VbP) can act synergistically with NNRTIs to increase their efficacy in killing HIV-1-infected cells. We also show that VbP is able to partially overcome issues with NNRTI resistance and is capable of killing infected cells without the presence of NNRTIs. This offers a promising strategy for enhancing NNRTI efficacy in elimination of HIV-1 reservoirs in patients.


PLoS Medicine ◽  
2020 ◽  
Vol 17 (12) ◽  
pp. e1003397
Author(s):  
Anthony Hauser ◽  
Katharina Kusejko ◽  
Leigh F. Johnson ◽  
Huldrych F. Günthard ◽  
Julien Riou ◽  
...  

Background Rising resistance of HIV-1 to non-nucleoside reverse transcriptase inhibitors (NNRTIs) threatens the success of the global scale-up of antiretroviral therapy (ART). The switch to WHO-recommended dolutegravir (DTG)-based regimens could reduce this threat due to DTG’s high genetic barrier to resistance. We used mathematical modeling to predict the impact of the scale-up of DTG-based ART on NNRTI pretreatment drug resistance (PDR) in South Africa, 2020 to 2040. Methods and findings We adapted the Modeling Antiretroviral drug Resistance In South Africa (MARISA) model, an epidemiological model of the transmission of NNRTI resistance in South Africa. We modeled the introduction of DTG in 2020 under 2 scenarios: DTG as first-line regimen for ART initiators, or DTG for all patients, including patients on suppressive NNRTI-based ART. Given the safety concerns related to DTG during pregnancy, we assessed the impact of prescribing DTG to all men and in addition to (1) women beyond reproductive age; (2) women beyond reproductive age or using contraception; and (3) all women. The model projections show that, compared to the continuation of NNRTI-based ART, introducing DTG would lead to a reduction in NNRTI PDR in all scenarios if ART initiators are started on a DTG-based regimen, and those on NNRTI-based regimens are rapidly switched to DTG. NNRTI PDR would continue to increase if DTG-based ART was restricted to men. When given to all men and women, DTG-based ART could reduce the level of NNRTI PDR from 52.4% (without DTG) to 10.4% (with universal DTG) in 2040. If only men and women beyond reproductive age or on contraception are started on or switched to DTG-based ART, NNRTI PDR would reach 25.9% in 2040. Limitations include substantial uncertainty due to the long-term predictions and the current scarcity of knowledge about DTG efficacy in South Africa. Conclusions Our model shows the potential benefit of scaling up DTG-based regimens for halting the rise of NNRTI resistance. Starting or switching all men and women to DTG would lead to a sustained decline in resistance levels, whereas using DTG-based ART in all men, or in men and women beyond childbearing age, would only slow down the increase in levels of NNRTI PDR.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark J. Siedner ◽  
Michelle A. Moorhouse ◽  
Bryony Simmons ◽  
Tulio de Oliveira ◽  
Richard Lessells ◽  
...  

AbstractLittle is known about the impact of pretreatment drug resistance (PDR) on the efficacy of second generation integrase inhibitors. We sequenced pretreatment plasma specimens from the ADVANCE trial (NCT03122262). Our primary outcome was 96-week virologic success, defined as a sustained viral load <1000 copies/mL from 12 weeks onwards, <200 copies/mL from 24 weeks onwards, and <50 copies/mL after 48 weeks. Here we report how this outcome was impacted by PDR, defined by the World Health Organization (WHO) mutation list. Of 1053 trial participants, 874 (83%) have successful sequencing, including 289 (33%) randomized to EFV-based therapy and 585 (67%) randomized to DTG-based therapy. Fourteen percent (122/874) have ≥1 WHO-defined mutation, of which 98% (120/122) are NNRTI mutations. Rates of virologic suppression are lower in the total cohort among those with PDR 65% (73/112) compared to those without PDR (85% [605/713], P < 0.001), and for those on EFV-based treatment (60% [12/20] vs 86% [214/248], P = 0.002) and for those on DTG-based treatment (61/92 [66%] vs 84% [391/465] P < 0.001, P for interaction by regimen 0.49). Results are similar in multivariable models adjusted for clinical characteristics and adherence. NNRTI resistance prior to treatment is associated with long-term failure of integrase inhibitor-containing first-line regimens, and portends high rates of first-line failure in sub Saharan Africa.


2020 ◽  
Author(s):  
Raphael Z Sangeda ◽  
Perpétua Gómes ◽  
Soo-Yon Rhee ◽  
Fausta Mosha ◽  
Ricardo J. Camacho ◽  
...  

Abstract As more HIV patients start combination antiretroviral therapy (cART), the emergence of HIV drug resistance (HIVDR) is inevitable. This will have consequences for the transmission of HIVDR, the success of ART, and the nature and trend of the epidemic. We recruited a cohort of 223 patients starting or continuing their first-line cART in Tanzania during the stavudine era in 2010. Patients were then followed up for one year. From those with a viral load test at baseline and follow-up time, 34% were failing virologically at the one-year endpoint. From 41 patients, protease and reverse transcriptase genotyping were successful. Eighteen samples were from therapy-naïve patients and 23 samples were taken under therapy either baseline for patients already under cART at study entry, or follow-up sample. The isolates were mostly subtype A, followed by C and D at 41.5%, 22% and 12.2% of the patients, respectively. No transmitted HIVDR was detected, as scored using the surveillance drug resistance mutations (DRMs) list. However, in 3 of the 18 samples from therapy-naïve patients, the clinical Rega interpretation algorithm scored 44D or 138A as non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance-associated polymorphisms. The most observed nucleoside reverse transcriptase inhibitor (NRTI) mutation was 184V. The mutation was found in 16 patients causing resistance to lamivudine and emtricitabine. Nineteen patients had NNRTI resistance mutations, the most common of which was 103N observed in 8 patients. These high levels of resistance calls for regular drug resistance surveillance in Tanzania to control the emergence and transmission of HIVDR.


2020 ◽  
Vol 76 (1) ◽  
pp. 130-134
Author(s):  
Francesco Saladini ◽  
Federica Giammarino ◽  
Behnaz A Hosseini ◽  
Alessia Giannini ◽  
Adele Boccuto ◽  
...  

Abstract Objectives Doravirine is a recently licensed HIV-1 NNRTI with improved efficacy, pharmacokinetics and safety profile compared with efavirenz and limited cross-resistance with rilpivirine and etravirine. In this in vitro study, cross-resistance to doravirine was analysed in a representative panel of NNRTI-resistant clones. Methods In vitro phenotypic susceptibility to doravirine was assessed in 10 clinically derived infectious clones with intermediate- to high-level resistance to rilpivirine, etravirine, efavirenz and nevirapine, and in NL4-3 site-directed mutants harbouring K103N, Y181C, M230L or K103N/Y181C NNRTI mutations. Results Although none of the infectious clones harboured any of the major doravirine resistance-associated mutations (RAMs) included in the IAS-USA reference list, doravirine fold change (FC) values were comparable to or higher than those calculated for other NNRTIs, particularly etravirine and rilpivirine. As expected, single NNRTI mutations K103N and Y181C did not impair doravirine susceptibility (FC 1.4 and 1.8, respectively), while reduced activity was observed with the single M230L or double K103N/Y181C mutations (FC 7.6 and 4.9, respectively). Median FC values increased significantly with increasing numbers of NNRTI RAMs (P = 0.005) and were &gt;10 in 4/4 and 1/4 clones harbouring four and three NNRTI RAMs, respectively. FC values correlated well with predicted susceptibility as inferred by Stanford HIV Drug Resistance Database (HIVdb) and ANRS algorithms (both P &lt; 0.001). Conclusions Substantial cross-resistance to doravirine was detected in NNRTI-resistant viruses harbouring complex mutational patterns, even in the absence of major IAS-USA doravirine RAMs. Therefore, based on the simple IAS-USA reference list, doravirine resistance may be underestimated in viruses harbouring multiple NNRTI mutations.


2020 ◽  
Vol 18 (4) ◽  
pp. 283-291
Author(s):  
Tasnim Tabassum ◽  
Syeda M. Azeem ◽  
Alecia N. Muwonge ◽  
Kathleen M. Frey

Background: Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are used in combination antiretroviral therapy to suppress viral loads in HIV patients. The chemical design of NNRTIs has changed in recent years in response to resistance associated mutations (RAMs) and resistance. NNRTIs are chemically diverse compounds that bind an allosteric site of HIV RT. Resistance-associated mutations (RAMs) identified in HIV patients are associated with NNRTI resistance. RAMs confer amino acid changes that alter both structural and physiochemical properties of the allosteric site. Ultimately these changes reduce NNRTI affinity. Previously, we used a combination of computational and experimental methods to analyze and validate RAMs for 3 diarylpyrimidine (DAPY) NNRTIs. Objective: The objective of this study is to apply these methods to other chemically diverse, non-DAPY NNRTIs. Materials and Methods: We selected MIV-150 (experimental microbicide) and doravirine for this study. A computational and molecular modeling strategy was used to evaluate the effects of RAMs. Calculated changes in drug affinity and stability (ΔS + ΔA) were used to determine overall resistance levels: susceptible, low, intermediate, and high. The ΔS + ΔA values for K101P suggest that this mutation confers intermediate/high-level resistance to MIV-150, but remains susceptible to doravirine. Based on the determined resistance levels, we analyzed the models and used Molecular Dynamics (MD) to compare the interactions of MIV-150/doravirine with RT wild-type (WT) and RT (K101P). From MD, we found key interactions were lost with RT (K101P), but are retained with doravirine. To experimentally validate our findings, we conducted a fluorescence-based reverse transcription assay for MIV-150 with RT (WT) and RT (K101P). IC50 values determined in assays show a 101-fold change in potency for MIV-150, but essentially no change for doravirine. Results: Our computational and experimental results are also consistent with antiviral data reported in the literature. Conclusion: We believe that this approach is effective for analyzing mutations to determine resistance profiles for chemically diverse NNRTIs in development.


2020 ◽  
Author(s):  
Anthony Hauser ◽  
Fardo Goldstein ◽  
Martina L. Reichmuth ◽  
Roger Kouyos ◽  
Nicola Low ◽  
...  

Background: Until 2019, first-line antiretroviral therapy (ART) in Southern Africa consisted of one non-nucleoside reverse transcriptase inhibitor (NNRTI) and two nucleoside reverse transcriptase inhibitors (NRTI). As a response to the increasing level of NNRTI resistance, these drugs are being replaced by dolutegravir (DTG), an integrase inhibitor with a high barrier to resistance. Patients failing an NNRTI-based regimen might therefore start DTG-based therapy with preexisting NRTI resistance, potentially jeopardizing the long-term success of DTG-based ART. We performed a systematic review and meta-analysis to quantify the prevalence of NRTI drug resistance mutations (DRMs) in patients failing NNRTI-based ART in Southern Africa. Methods: We searched several bibliographic databases, including Embase and Medline, from inception to May 2019 to identify studies reporting NRTI DRMs observed among adult HIV-positive patients experiencing virological failure on first-line NNRTI-based regimens in countries of Southern Africa. After screening titles and abstracts, two independent reviewers assessed full manuscripts of potentially eligible studies and extracted data. We developed a hierarchical logistic meta-regression model to synthesize the effect of different ART regimen on the emergence of NRTI and NNRTI DRMs across studies, accounting for ART duration and study-specific effects. Analyses were performed in a Bayesian framework using the rstan package in R.Results: Of 7,579 studies, 3,247 were duplicates and 4,135 were excluded after initial screening. After assessing 194 full-texts, we included 15 studies with 17 study samples and 2,432 individuals from South Africa (13 studies), Mozambique (1), Botswana (1), Lesotho (1) and Zambia (1). We analyzed the dynamics of nine NRTI DRMs by ART regimen. Baseline levels of DRMs were low, ranging from 0.2% to 7.8%. The use of emtricitabine/lamivudine was associated with development of high levels of the M184V/I mutation (1.2% at baseline vs. 64% after 3 years on treatment). When emtricitabine/lamivudine was combined with tenofovir disoproxil fumarate, a substantial increase in the K65R mutation (0.8% at baseline vs. 69.5% after 3 years) was observed. We also analyzed the dynamics of seven NNRTI DRMs after 3 years. With a prevalence of 45.6% after 3 years of efavirenz, K103 was the most prevalent NNRTI resistance mutation, followed by V106 (35.5% after 3 years of efavirenz) and Y181 (14.7% after 3 years of nevirapine).Interpretation: In patients failing first-line ART in Southern Africa, the prevalence of NRTI DRM is high, suggesting that a substantial proportion of patients failing NNRTI-based regimen will switch to DTG-based regimen with non-working NRTIs. This could potentially impair the long-term efficacy of DTG-introduction in Southern Africa.


Sign in / Sign up

Export Citation Format

Share Document