scholarly journals Erratum for Jung et al., “Direct Electron Transfer between the frhAGB-Encoded Hydrogenase and Thioredoxin Reductase in the Nonmethanogenic Archaeon Thermococcus onnurineus NA1”

2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Hae-Chang Jung ◽  
Jae Kyu Lim ◽  
Tae-Jun Yang ◽  
Sung Gyun Kang ◽  
Hyun Sook Lee
2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Hae-Chang Jung ◽  
Jae Kyu Lim ◽  
Tae-Jun Yang ◽  
Sung Gyun Kang ◽  
Hyun Sook Lee

ABSTRACT To date, NAD(P)H, ferredoxin, and coenzyme F420 have been identified as electron donors for thioredoxin reductase (TrxR). In this study, we present a novel electron source for TrxR. In the hyperthermophilic archaeon Thermococcus onnurineus NA1, the frhAGB-encoded hydrogenase, a homolog of the F420-reducing hydrogenase of methanogens, was demonstrated to interact with TrxR in coimmunoprecipitation experiments and in vitro pulldown assays. Electrons derived from H2 oxidation by the frhAGB-encoded hydrogenase were transferred to TrxR and reduced Pdo, a redox partner of TrxR. Interaction and electron transfer were observed between TrxR and the heterodimeric hydrogenase complex (FrhAG) as well as the heterotrimeric complex (FrhAGB). Hydrogen-dependent reduction of TrxR was 7-fold less efficient than when NADPH was the electron donor. This study not only presents a different type of electron donor for TrxR but also reveals new functionality of the frhAGB-encoded hydrogenase utilizing a protein as an electron acceptor. IMPORTANCE This study has importance in that TrxR can use H2 as an electron donor with the aid of the frhAGB-encoded hydrogenase as well as NAD(P)H in T. onnurineus NA1. Further studies are needed to explore the physiological significance of this protein. This study also has importance as a significant step toward understanding the functionality of the frhAGB-encoded hydrogenase in a nonmethanogen; the hydrogenase can transfer electrons derived from oxidation of H2 to a protein target by direct contact without the involvement of an electron carrier, which is distinct from the mechanism of its homologs, F420-reducing hydrogenases of methanogens.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4525
Author(s):  
Franziska Schachinger ◽  
Hucheng Chang ◽  
Stefan Scheiblbrandner ◽  
Roland Ludwig

The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. The combination of both biosensor elements—enzymes and electrodes—is evaluated by comparison of substrate specificity, current density, sensitivity, and the range of detection.


2021 ◽  
pp. 107818
Author(s):  
Miriam Izzo ◽  
Silvio Osella ◽  
Margot Jacquet ◽  
Małgorzata Kiliszek ◽  
Ersan Harputlu ◽  
...  

1982 ◽  
Vol 141 ◽  
pp. 23-32 ◽  
Author(s):  
Robert M. Ianniello ◽  
Thomas J. Lindsay ◽  
Alexander M. Yacynych

Sign in / Sign up

Export Citation Format

Share Document