gluconobacter oxydans
Recently Published Documents


TOTAL DOCUMENTS

405
(FIVE YEARS 78)

H-INDEX

36
(FIVE YEARS 5)

2024 ◽  
Vol 84 ◽  
Author(s):  
M. Shahzad ◽  
M. Chaudhry ◽  
M. G. Shahid ◽  
A. Ahsan ◽  
M. Dar ◽  
...  

Abstract Bacteria were isolated from samples of Fresh Apple juices from shops of three different localities of Lahore. Analysis of samples from Liberty, Anarkali and Yateem khana Markets show different levels of contamination. There were pathogenic and non-pathogenic bacteria in all samples and were identified by the morphological and biochemical tests. Most of the plasmids of pathogenic bacteria were 4kb in their molecular size. Ribotyping of 16S ribosomal RNA gene sequencing was done to confirm Helicobacter pylori strain and Gluconobacter oxydans. The highest sensitivity of 210mm was shown by Enterobacter sp. against Aztheromysine disk (15µg) while Micrococcus sp. was highly resistant against all of the Antibiotics applied. The antibiotic resistance of pathogenic bacteria was also checked against Ricinus communis plant's extracts, all isolated bacterial pathogens were resistant but only, E.coli was inhibited at 300µl of the extracts. Presence of pathogenic bacteria in Apple juice samples was due to contamination of sewage water in drinking water while some of these pathogenic bacteria came from Apple's tree and other from store houses of fruits.


Author(s):  
Weeranuch Lang ◽  
Yuya Kumagai ◽  
Juri Sadahiro ◽  
Wataru Saburi ◽  
Rakrudee Sarnthima ◽  
...  

2021 ◽  
Vol 176 ◽  
pp. 108192
Author(s):  
Chaozhong Xu ◽  
Tao He ◽  
Xin Zhou ◽  
Yong Xu ◽  
Xiaoli Gu

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Emmanuel Oluwaseun Garuba ◽  
Obinna Markraphael Ajunwa ◽  
Aishat Nana Ibrahim-King

Abstract Background The emergence of antibiotic-resistant microorganisms has been largely associated with drug misuse, drug abuse, and indiscriminate disposal of drugs; however, the interactions between some environmental factors and antibiotic resistance by microorganisms have been understudied. In this study, the effects of sound and electromagnetic field on the growth and antibiotic susceptibility of selected microorganisms to antibiotics were investigated. Results Microorganisms used include Gluconobacter oxydans ATCC 19,357, Rhodobacter sphaeroides ATCC 17,023, Citrobacter freundii ATCC 33,128, Yersina pestis ATCC 11,953, Bacillus subtilis 6633, Acetobacter aceti ATCC 15,973, Escherichia coli ATCC 25,922, Pseudomonas aeuriginosa ATCC 9027, Streptococcus pyogenes ATCC 19,613, Klebsiella pneumonia ATCC 25,955, Staphylococcus aureus ATCC 25,923 and Serratia marcescens ATCC 14,766. The antibiotics used were: Ciprofloxacin 5 μg, Imipenem 10 μg, Ampicillin 10 μg, Ceftazidime 30 μg and Tetracycline 30 μg for Gram-negative bacteria while Pefloxacin 10 μg, Gentamycin 10 μg, Amplicillin + Cloxacillin 30 μg, Cefuroxime 20 μg, Amoxacillin 30 μg, Ceftriaxone 25 μg, Ciprofloxacin 10 μg, Streptomycin 30 μg, Co-trimoxazole 30 μg, and Erythromycin 10 μg for Gram-positive bacteria, respectively. Acoustic treatment had varying effects on the antibiotics susceptibility profile of all test bacterial culture. Before exposure, P. aeruginosa had the highest zone of inhibition of 34 ± 3.4 mm, while B. subtilis had least inhibition zone of 12 ± 2.8. After exposure to acoustic treatment at 5000 Hz/90 dB at 72 h, C. freundii had highest zone of inhibition of 32 ± 0.7 mm and the least zone of 11 ± 1.4 mm observed in P. aeruginosa. At 1125 Hz/80 dB after 72 h, R. sphaeroides had highest zone of 34 ± 0.7 mm while A. aceti had least zone of inhibition of 10 ± 0 mm. Effect of electromagnetic flux treatment of 15 min showed E. coli to be the most inhibited having a growth rate of 0.08 log cfu/mL, antibiotics testing showed G. oxydans to have the highest zone of inhibition of 28 ± 3.5 mm and least zone was observed in B. subtilis having a zone of 13 ± 2.8 mm. Conclusion This study showed that environmental factor such as sound and electromagnetic flux (EMF) could interfere with the physiology of bacteria including resistance/susceptibility to antibiotics. However, further investigation will be needed to understand full mechanisms of action of sound and electromagnetic field on bacteria.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexa M. Schmitz ◽  
Brooke Pian ◽  
Sean Medin ◽  
Matthew C. Reid ◽  
Mingming Wu ◽  
...  

AbstractBioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency.


10.5219/1604 ◽  
2021 ◽  
Vol 15 ◽  
pp. 995-1004
Author(s):  
Aleš Vavřiník ◽  
Kateřina Štůsková ◽  
Adrian Alumbro ◽  
Methusela Perrocha ◽  
Lenka Sochorová ◽  
...  

The presented work aimed to study the inhibition using nanoparticles produced by the green synthesis in selected acetic acid and lactic acid bacteria, which are related to viticulture. The degree of ability to eliminate silver particles produced by green syntheses was determined using the plate method on Petri dishes. This is done using two different approaches - the method of direct application of the solution to the surface of the inoculated medium (determination of inhibition zones) and the method of application using nanoparticles to the inoculated medium. Gluconobacter oxydans (CCM 3618) and Acetobacter aceti (CCM 3620T) were studied from acet acetic bacteria. The lactic acid bacteria were Lactobacillus brevis (CCM 1815) and Pediococcus damnosus (CCM 2465). The application of silver nanoparticles was always in concentrations of 0, 0.0625, 0.125, 0.25, 0.5, and 1 g.L-1. All applied concentrations of silver nanoparticles showed an inhibitory effect on the monitored microorganisms. Silver particles could be used in wine technology for their antibacterial effects, mainly to inhibit microorganisms during vinification, as a substitute for sulfur dioxide.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 332
Author(s):  
Yulia Plekhanova ◽  
Sergei Tarasov ◽  
Anatoly Reshetilov

Immobilization of the biocomponent is one of the most important stages in the development of microbial biosensors. In this study, we examined the electrochemical properties of a novel PEDOT:PSS/graphene/Nafion composite used to immobilize Gluconobacter oxydans bacterial cells on the surface of a graphite screen-printed electrode. Bioelectrode responses to glucose in the presence of a redox mediator 2,6-dichlorophenolindophenol were studied. The presence of graphene in the composite reduced the negative effect of PEDOT:PSS on cells and improved its conductivity. The use of Nafion enabled maintaining the activity of acetic acid bacteria at the original level for 120 days. The sensitivity of the bioelectrode based on G. oxydans/PEDOT:PSS/graphene/Nafion composite was shown to be 22 μA × mM−1 × cm−2 within the linear range of glucose concentrations. The developed composite can be used both in designing bioelectrochemical microbial devices and in biotechnology productions for long-term immobilization of microorganisms.


Author(s):  
Li Liu ◽  
Weizhu Zeng ◽  
Shiqin Yu ◽  
Jianghua Li ◽  
Jingwen Zhou

Gluconobacter oxydans is important in the conversion of D-sorbitol into l-sorbose, which is an essential intermediate for industrial-scale production of vitamin C. In a previous study, the strain G. oxydans WSH-004 could directly produce 2-keto-l-gulonic acid (2-KLG). However, its D-sorbitol tolerance was poor compared with that of other common industrial G. oxydans strains, which grew well in the presence of more than 200 g/L of D-sorbitol. This study aimed to use the microbial microdroplet culture (MMC) system for the adaptive evolution of G. oxydans WSH-004 so as to improve its tolerance to high substrate concentration and high temperature. A series of adaptively evolved strains, G. oxydans MMC1-MMC10, were obtained within 90 days. The results showed that the best strain MMC10 grew in a 300 g/L of D-sorbitol medium at 40°C. The comparative genomic analysis revealed that genetic changes related to increased tolerance were mainly in protein translation genes. Compared with the traditional adaptive evolution method, the application of microdroplet-aided adaptive evolution could improve the efficiency in terms of reducing time and simplifying the procedure for strain evolution. This research indicated that the microdroplet-aided adaptive evolution was an effective tool for improving the phenotypes with undemonstrated genotypes in a short time.


Sign in / Sign up

Export Citation Format

Share Document