scholarly journals Detection of Human-Derived Fecal Pollution in Environmental Waters by Use of a PCR-Based Human Polyomavirus Assay

2006 ◽  
Vol 72 (12) ◽  
pp. 7567-7574 ◽  
Author(s):  
Shannon M. McQuaig ◽  
Troy M. Scott ◽  
Valerie J. Harwood ◽  
Samuel R. Farrah ◽  
Jerzy O. Lukasik

ABSTRACT Regulatory agencies mandate the use of fecal coliforms, Escherichia coli or Enterococcus spp., as microbial indicators of recreational water quality. These indicators of fecal pollution do not identify the specific sources of pollution and at times underestimate health risks associated with recreational water use. This study proposes the use of human polyomaviruses (HPyVs), which are widespread among human populations, as indicators of human fecal pollution. A method was developed to concentrate and extract HPyV DNA from environmental water samples and then to amplify it by nested PCR. HPyVs were detected in as little as 1 μl of sewage and were not amplified from dairy cow or pig wastes. Environmental water samples were screened for the presence of HPyVs and two additional markers of human fecal pollution: the Enterococcus faecium esp gene and the 16S rRNA gene of human-associated Bacteroides. The presence of human-specific indicators of fecal pollution was compared to fecal coliform and Enterococcus concentrations. HPyVs were detected in 19 of 20 (95%) samples containing the E. faecium esp gene and Bacteroides human markers. Weak or no correlation was observed between the presence/absence of human-associated indicators and counts of indicator bacteria. The sensitivity, specificity, and correlation with other human-associated markers suggest that the HPyV assay could be a useful predictor of human fecal pollution in environmental waters and an important component of the microbial-source-tracking “toolbox.”

2007 ◽  
Vol 73 (21) ◽  
pp. 7118-7121 ◽  
Author(s):  
Jennifer A. Ufnar ◽  
Shiao Y. Wang ◽  
David F. Ufnar ◽  
R. D. Ellender

ABSTRACT A PCR-based assay (Mrnif) targeting the nifH gene of Methanobrevibacter ruminantium was developed to detect fecal pollution from domesticated ruminants in environmental water samples. The assay produced the expected amplification product only when the reaction mixture contained DNA extracted from M. ruminantium culture, bovine (80%), sheep (100%), and goat (75%) feces, and water samples from a bovine waste lagoon (100%) and a creek contaminated with bovine lagoon waste (100%). The assay appears to be specific and sensitive and can distinguish between domesticated- and nondomesticated-ruminant fecal pollution in environmental samples.


2004 ◽  
Vol 70 (11) ◽  
pp. 6611-6618 ◽  
Author(s):  
Corinne Audemard ◽  
Kimberly S. Reece ◽  
Eugene M. Burreson

ABSTRACT The protistan parasite Perkinsus marinus is a severe pathogen of the oyster Crassostrea virginica along the east coast of the United States. Very few data have been collected, however, on the abundance of the parasite in environmental waters, limiting our understanding of P. marinus transmission dynamics. Real-time PCR assays with SybrGreen I as a label for detection were developed in this study for quantification of P. marinus in environmental waters with P. marinus species-specific primers and of Perkinsus spp. with Perkinsus genus-specific primers. Detection of DNA concentrations as low as the equivalent of 3.3 � 10−2 cell per 10-μl reaction mixture was obtained by targeting the multicopy internal transcribed spacer region of the genome. To obtain reliable target quantification from environmental water samples, removal of PCR inhibitors and efficient DNA recovery were two major concerns. A DNA extraction kit designed for tissues and another designed for stool samples were tested on environmental and artificial seawater (ASW) samples spiked with P. marinus cultured cells. The stool kit was significantly more efficient than the tissue kit at removing inhibitors from environmental water samples. With the stool kit, no significant difference in the quantified target concentrations was observed between the environmental and ASW samples. However, with the spiked ASW samples, the tissue kit demonstrated more efficient DNA recovery. Finally, by performing three elutions of DNA from the spin columns, which were combined prior to target quantification, variability of DNA recovery from different samples was minimized and more reliable real-time PCR quantification was accomplished.


2017 ◽  
Vol 83 (8) ◽  
Author(s):  
B. Hughes ◽  
D. J. Beale ◽  
P. G. Dennis ◽  
S. Cook ◽  
W. Ahmed

ABSTRACT Detection of human wastewater contamination in recreational waters is of critical importance to regulators due to the risks posed to public health. To identify such risks, human wastewater-associated microbial source tracking (MST) markers have been developed. At present, however, a greater understanding of the suitability of these markers for the detection of diluted human wastewater in environmental waters is necessary to predict risk. Here, we compared the process limit of detection (PLOD) and process limit of quantification (PLOQ) of six human wastewater-associated MST markers (Bacteroides HF183 [HF183], Escherichia coli H8 [EC H8], Methanobrevibacter smithii nifH, human adenovirus [HAdV], human polyomavirus [HPyV], and pepper mild mottle virus [PMMoV]) in relation to a fecal indicator bacterium (FIB), Enterococcus sp. 23S rRNA (ENT 23S), and three enteric viruses (human adenovirus serotypes 40/41 [HAdV 40/41], human norovirus [HNoV], and human enterovirus [EV]) in beach water samples seeded with raw and secondary-treated wastewater. Among the six MST markers tested, HF183 was the most sensitive measure of human fecal pollution and was quantifiable up to dilutions of 10−6 and 10−4 for beach water samples seeded with raw and secondary-treated wastewater, respectively. Other markers and enteric viruses were detected at various dilutions (10−1 to 10−5). These MST markers, FIB, and enteric viruses were then quantified in beach water (n = 12) and sand samples (n = 12) from South East Queensland (SEQ), Australia, to estimate the levels of human fecal pollution. Of the 12 sites examined, beach water and sand samples from several sites had quantifiable concentrations of HF183 and PMMoV markers. Overall, our results indicate that while HF183 is the most sensitive measure of human fecal pollution, it should be used in conjunction with a conferring viral marker to avoid overestimating the risk of gastrointestinal illness. IMPORTANCE MST is an effective tool to help utilities and regulators improve recreational water quality around the globe. Human fecal pollution poses significant public health risks compared to animal fecal pollution. Several human wastewater-associated markers have been developed and used for MST field studies. However, a head-to-head comparison in terms of their performance to detect diluted human fecal pollution in recreational water is lacking. In this study, we cross-compared the performance of six human wastewater-associated markers in relation to FIB and enteric viruses in beach water samples seeded with raw and secondary-treated wastewater. The results of this study will provide guidance to regulators and utilities on the appropriate application of MST markers for tracking the sources of human fecal pollution in environmental waters and confer human health risks.


2012 ◽  
Vol 78 (12) ◽  
pp. 4338-4345 ◽  
Author(s):  
Hodon Ryu ◽  
Jingrang Lu ◽  
Jason Vogel ◽  
Michael Elk ◽  
Felipe Chávez-Ramírez ◽  
...  

ABSTRACTWhile the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous toBacteroidetesandClostridia. The Crane1 marker targeted a dominant clade of unclassifiedLactobacillalessequences closely related toCatellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e.,n= 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n= 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n= 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.


2004 ◽  
Vol 4 (2) ◽  
pp. 103-106
Author(s):  
R. Santos ◽  
S. Gonçalves ◽  
F. Macieira ◽  
F. Oliveira ◽  
R. Rodrigues ◽  
...  

In recent years, non-tuberculous mycobacteria (NTM), once considered merely environmental saprophytes, have emerged as a major cause of opportunistic infections. There is no evidence of human-to-human transmission but they have been found in several environmental water samples. It is, therefore, of the utmost importance to develop methods of rapidly and accurately detecting non-tuberculous mycobacteria in water samples. To obtain a maximum recovery rate and a reduction of Mycobacterium spp. detection time in water samples, different decontamination, enrichment procedures and antibiotics supplements were tested before the inoculation into the Bactec® system. The proposed method of sample treatment (decrease in the decontamination time, followed for a peptone pre-enrichment step and an aztreonam and cefepime supplement) before the inoculation into the Bactec® system proved to be a good option for reliable and fast detection of Mycobacterium spp. in water samples.


1991 ◽  
Vol 24 (2) ◽  
pp. 251-254 ◽  
Author(s):  
R. Kfir ◽  
P. Coubrough ◽  
W. O. K. Grabow

The occurrence of somatic (F') and male-specific (F') coliphages and Salmonella phages in a variety of environmental water samples was studied using different bacterial hosts. The number of plaque-forming units (pfu) of the different bacteriophages were compared and their resistance pattern to a biological treatment (humus tank) and chlorination was evaluated. The presence of the bacteriophages in shellfish was also studied. The morphology of isolate bacteriophages was examined as well as the visibility of the different plaques formed. Coliphages were found to produce larger and clearer plaques than all other bacteriophages studied. In most of the environmental water samples coliphages outnumbered all other bacteriophages, with the exception of dam water in which higher levels of F' Salmonella phages were detected. The majority of the F' Salmonella phages were shown to be RNA bacteriophages.


Sign in / Sign up

Export Citation Format

Share Document