scholarly journals Identification of MET10-932 and Characterization as an Allele Reducing Hydrogen Sulfide Formation in Wine Strains of Saccharomyces cerevisiae

2010 ◽  
Vol 76 (23) ◽  
pp. 7699-7707 ◽  
Author(s):  
Angela Linderholm ◽  
Kevin Dietzel ◽  
Marissa Hirst ◽  
Linda F. Bisson

ABSTRACT A vineyard isolate of the yeast Saccharomyces cerevisiae, UCD932, was identified as a strain producing little or no detectable hydrogen sulfide during wine fermentation. Genetic analysis revealed that this trait segregated as a single genetic determinant. The gene also conferred a white colony phenotype on BiGGY agar (bismuth-glucose-glycine-yeast agar), which is thought to indicate low basal levels of sulfite reductase activity. However, this isolate does not display a requirement for S-containing amino acids, indicating that the sulfate reduction pathway is fully operational. Genetic crosses against known mutations conferring white colony color on BiGGY agar identified the gene leading to reduced H2S formation as an allele of MET10 (MET10-932), which encodes a catalytic subunit of sulfite reductase. Sequence analysis of MET10-932 revealed several corresponding amino acid differences in relation to laboratory strain S288C. Allele differences for other genes of the sulfate reduction pathway were also detected in UCD932. The MET10 allele of UCD932 was found to be unique in comparison to the sequences of several other vineyard isolates with differing levels of production of H2S. Replacing the MET10 allele of high-H2S-producing strains with MET10-932 prevented H2S formation by those strains. A single mutative change, corresponding to T662K, in MET10-932 resulted in a loss of H2S production. The role of site 662 in sulfide reduction was further analyzed by changing the encoded amino acid at this position. A change back to threonine or to the conservative serine fully restored the H2S formation conferred by this allele. In addition to T662K, arginine, tryptophan, and glutamic acid substitutions similarly reduced sulfide formation.

2008 ◽  
Vol 74 (5) ◽  
pp. 1418-1427 ◽  
Author(s):  
Angela L. Linderholm ◽  
Carrie L. Findleton ◽  
Gagandeep Kumar ◽  
Yeun Hong ◽  
Linda F. Bisson

ABSTRACT A screen of the Saccharomyces cerevisiae deletion strain set was performed to identify genes affecting hydrogen sulfide (H2S) production. Mutants were screened using two assays: colony color on BiGGY agar, which detects the basal level of sulfite reductase activity, and production of H2S in a synthetic juice medium using lead acetate detection of free sulfide in the headspace. A total of 88 mutants produced darker colony colors than the parental strain, and 4 produced colonies significantly lighter in color. There was no correlation between the appearance of a dark colony color on BiGGY agar and H2S production in synthetic juice media. Sixteen null mutations were identified as leading to the production of increased levels of H2S in synthetic juice using the headspace analysis assay. All 16 mutants also produced H2S in actual juices. Five of these genes encode proteins involved in sulfur containing amino acid or precursor biosynthesis and are directly associated with the sulfate assimilation pathway. The remaining genes encode proteins involved in a variety of cellular activities, including cell membrane integrity, cell energy regulation and balance, or other metabolic functions. The levels of hydrogen sulfide production of each of the 16 strains varied in response to nutritional conditions. In most cases, creation of multiple deletions of the 16 mutations in the same strain did not lead to a further increase in H2S production, instead often resulting in decreased levels.


2005 ◽  
Vol 4 (6) ◽  
pp. 1057-1065 ◽  
Author(s):  
M. Wilhelm ◽  
F.-X. Wilhelm

ABSTRACT Reverse transcriptase (RT) with its associated RNase H (RH) domain and integrase (IN) are key enzymes encoded by retroviruses and retrotransposons. Several studies have implied a functional role of the interaction between IN and RT during the replication of retroviral and retrotransposon genomes. In this study, IN deletion mutants were used to investigate the role of IN on the RT activity of the yeast Saccharomyces cerevisiae retrotransposon Ty1. We have identified two domains of Ty1 integrase which have effects on RT activity in vivo. The deletion of a domain spanning amino acid residues 233 to 520 of IN increases the exogenous specific activity of RT up to 20-fold, whereas the removal of a region rich in acidic amino acid residues between residues 521 and 607 decreases its activity. The last result complements our observation that an active recombinant RT protein can be obtained if a small acidic tail mimicking the acidic domain of IN is fused to the RT-RH domain. We suggest that interaction between these acidic amino acid residues of IN and a basic region of RT could be critical for the correct folding of RT and for the formation of an active conformation of the enzyme.


2006 ◽  
Vol 6 (2) ◽  
pp. 134-142 ◽  
Author(s):  
Rita C. Vargas ◽  
Raúl García-Salcedo ◽  
Sandra Tenreiro ◽  
Miguel C. Teixeira ◽  
Alexandra R. Fernandes ◽  
...  

ABSTRACT The QDR2 gene of Saccharomyces cerevisiae encodes a putative plasma membrane drug:H+ antiporter that confers resistance against quinidine, barban, bleomycin, and cisplatin. This work provides experimental evidence of defective K+ (Rb+) uptake in the absence of QDR2. The direct involvement of Qdr2p in K+ uptake is reinforced by the fact that increased K+ (Rb+) uptake due to QDR2 expression is independent of the Trk1p/Trk2p system. QDR2 expression confers a physiological advantage for the yeast cell during the onset of K+ limited growth, due either to a limiting level of K+ in the growth medium or to the presence of quinidine. This drug decreases the K+ uptake rate and K+ accumulation in the yeast cell, especially in the Δqdr2 mutant. Qdr2p also helps to sustain the decrease of intracellular pH in quinidine-stressed cells in growth medium at pH 5.5 by indirectly promoting H+ extrusion affected by the drug. The results are consistent with the hypothesis that Qdr2p may also couple K+ movement with substrate export, presumably with quinidine. Other clues to the biological role of QDR2 in the yeast cell come from two additional lines of experimental evidence. First, QDR2 transcription is activated under nitrogen (NH4 +) limitation or when the auxotrophic strain examined enters stationary phase due to leucine limitation, this regulation being dependent on general amino acid control by Gcn4p. Second, the amino acid pool is higher in Δqdr2 cells than in wild-type cells, indicating that QDR2 expression is, directly or indirectly, involved in amino acid homeostasis.


1981 ◽  
Vol 1 (7) ◽  
pp. 584-593 ◽  
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


1981 ◽  
Vol 1 (7) ◽  
pp. 584-593
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


1982 ◽  
Vol 152 (2) ◽  
pp. 874-879
Author(s):  
M K Winston ◽  
J K Bhattacharjee

The growth of Saccharomyces cerevisiae wild-type strain X2180 in minimal medium was inhibited by the addition of higher-than-supplementary levels of alpha-aminoadipate. This inhibitory effect was reversed by the addition of arginine, asparagine, aspartate, glutamine, homoserine, methionine, or serine as single amino acid supplements. Mutants belonging to the lys2 and lys14 loci were able to grow in lysine-supplemented alpha-aminoadipate medium, although not as well as when selected amino acids were added. Growth in alpha-aminoadipate medium by all strains was accompanied by an accumulation of alpha-ketoadipate. Glutamate:keto-adipate transaminase levels were derepressed two- to fivefold in lys2 mutants using alpha-aminoadipate as a nitrogen source. Wild-type strain X2180 growing in amino acid-supplemented AA medium exhibited higher levels of alpha-aminoadipate reductase. Mutants unable to use alpha-aminoadipate without amino acid supplementation were obtained by treatment of lys2 strain MW5-64 and were shown to have glutamate: ketoadipate transaminase activity and to lack alpha-aminoadipate reductase activity. Altered cell morphologies, including increased size, multiple buds, pseudohyphae, and germ tubes, evidenced by cells grown in alpha-aminoadipate medium suggest that higher-than-supplementary levels of alpha-aminoadipate result in an impairment of cell division.


2005 ◽  
Vol 185 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Geok-Yong Yow ◽  
Takuma Uo ◽  
Tohru Yoshimura ◽  
Nobuyoshi Esaki

Sign in / Sign up

Export Citation Format

Share Document