scholarly journals A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes

2016 ◽  
Vol 82 (22) ◽  
pp. 6557-6572 ◽  
Author(s):  
Yuka Kojima ◽  
Anikó Várnai ◽  
Takuya Ishida ◽  
Naoki Sunagawa ◽  
Dejan M. Petrovic ◽  
...  

ABSTRACTFungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such asGloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome ofG. trabeumencodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants ofGtLPMO9A seem to be produced, a single-domain variant,GtLPMO9A-1, and a longer variant,GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinctGtLPMO9A-2 inPichia pastorisand investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed thatGtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs,GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action ofGtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO,NcLPMO9C fromNeurospora crassarevealed thatGtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity ofNcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities ofGtLPMO9A-2. These results provide insight into the LPMO potential ofG. trabeumand provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity.IMPORTANCECurrently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme,GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone.GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential ofGtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.

1999 ◽  
Vol 65 (2) ◽  
pp. 674-679 ◽  
Author(s):  
Andrzej Paszczynski ◽  
Ronald Crawford ◽  
David Funk ◽  
Barry Goodell

ABSTRACT The new dimethoxycatechol 4,5-dimethoxy-1,2-benzenediol (DMC) and the new dimethoxyhydroquinone 2,5-dimethoxy-1,4-benzenediol (DMH) were isolated from stationary cultures of the brown rot fungusGloeophyllum trabeum growing on a glucose mineral medium protected from light. The structure was elucidated by gas chromatography-mass spectrometry through comparison to a synthetic standard. Further confirmation was obtained by forming a dimethoxyoxazole derivative by condensation of DMC with methylene chloride and through examination of methylated derivatives. DMC and DMH may serve as ferric chelators, oxygen-reducing agents, and redox-cycling molecules, which would include functioning as electron transport carriers to Fenton’s reactions. Thus, they appear to be important components of the brown rot decay system of the fungus.


2010 ◽  
Vol 101 (10) ◽  
pp. 3526-3533 ◽  
Author(s):  
M.L. Rasmussen ◽  
P. Shrestha ◽  
S.K. Khanal ◽  
A.L. Pometto III ◽  
J. (Hans) van Leeuwen

Holzforschung ◽  
2004 ◽  
Vol 58 (3) ◽  
pp. 311-315 ◽  
Author(s):  
H.-L. Lee ◽  
G.C. Chen ◽  
R.M. Rowell

Abstract Resistance of wood reacted in situ with phosphorus pentoxide-amine to the brown-rot fungus Gloeophyllum trabeum and white-rot fungus Trametes versicolor was examined. Wood reacted with either octyl, tribromo, or nitro derivatives were more resistant to both fungi. Threshold retention values of phosphoramide-reacted wood to white-rot fungus T. versicolor ranged from 2.9 to 13.3 mmol, while these for brown-rot fungus G. trabeum ranged from 8.1 to 19.2 mmol. Wood reacted with phosphoramide tested to be more resistant to white-rot than brown-rot attack.


Sign in / Sign up

Export Citation Format

Share Document