brown rot decay
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 3)

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lipeng Zhang ◽  
Qifang Xie ◽  
Liujie Yang ◽  
Yajie Wu ◽  
Xingxia Ma

Abstract In order to predict the mechanical properties of Korean pine after brown-rot decay based on its chemical composition change, 252 samples were prepared and exposed to a 14-week accelerated laboratory decay test using the brown-rot fungus Gloeophyllum trabeum. The mass loss, parallel-to-grain compressive strength, parallel-to-grain tensile strength and bending strengths were tested. Then chemical components and scanning electron micrograph analysis were conducted every two weeks. Results indicated that the mass loss rates of the samples increased with the increasing decay time and were negatively correlated with the sample volume. The strength loss rates were positively correlated with the decay time and mass loss rates. After 14 weeks the average strength loss rates of the parallel-to-grain compressive, tensile and bending samples reached 32%, 41% and 41%, respectively. Strengths degradation was found sensitive to the change of cellulose and hemicellulose contents. Further, mathematical regression models were proposed based on the content changes of the cellulose and hemicellulose to quantitatively predict the degradation of the strengths of Korean pine after brown-rot decay.


2021 ◽  
Vol 2 ◽  
Author(s):  
Martina Kölle ◽  
Maria Augusta Crivelente Horta ◽  
J. Philipp Benz ◽  
Annica Pilgård

Brown rot fungi degrade wood in a two-step process in which enzymatic hydrolysis is preceded by an oxidative degradation phase. While a detailed understanding of the molecular processes during brown rot decay is mandatory for being able to better protect wooden products from this type of degradation, the underlying mechanisms are still not fully understood. This is particularly true for wood that has been treated to increase its resistance against rot. In the present study, the two degradation phases were separated to study the impact of wood acetylation on the behavior of three brown rot fungi commonly used in wood durability testing. Transcriptomic data from two strains of Rhodonia placenta (FPRL280 and MAD-698) and Gloeophyllum trabeum were recorded to elucidate differences between the respective decay strategies. Clear differences were found between the two decay stages in all fungi. Moreover, strategies varied not only between species but also between the two strains of the same species. The responses to wood acetylation showed that decay is generally delayed and that parts of the process are attenuated. By hierarchical clustering, we could localize several transcription factors within gene clusters that were heavily affected by acetylation, especially in G. trabeum. The results suggest that regulatory circuits evolve rapidly and are probably the major cause behind the different decay strategies as observed even between the two strains of R. placenta. Identifying key genes in these processes can help in decay detection and identification of the fungi by biomarker selection, and also be informative for other fields, such as fiber modification by biocatalysts and the generation of biochemical platform chemicals for biorefinery applications.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1121
Author(s):  
Samuel L Zelinka ◽  
Carl J. Houtman ◽  
Kolby Hirth ◽  
Steven Lacher ◽  
Linda Lorenz ◽  
...  

Acetylation is widely used as a wood modification process that protects wood from fungal decay. The mechanisms by which acetylation protects wood are not fully understood. With these experiments, we expand upon the literature and test whether previously observed differences in iron uptake by wood were a result of decreased iron binding capacity or slower diffusion. We measured the concentration of iron in 2 mm thick wood sections at 0, 10, and 20% acetylation as a function of time after exposure to iron solutions. The iron was introduced either strongly chelated with oxalate or weakly chelated with acetate. The concentrations of iron and oxalate in solution were chosen to be similar to those found during brown rot decay, while the concentration of iron and acetate matched previous work. The iron content of oxalate-exposed wood increased only slightly and was complete within an hour, suggesting little absorption and fast diffusion, or only slight surface adsorption. The increase in iron concentration from acetate solutions with time was consistent with Fickian diffusion, with a diffusion coefficient on the order of 10−16 m2 s−1. The rather slow diffusion rate was likely due to significant binding of iron within the wood cell wall. The diffusion coefficient did not depend on the acetylation level; however, the capacity for iron absorption from acetate solution was greatly reduced in the acetylated wood, likely due to the loss of OH groups. We explored several hypotheses that might explain why the diffusion rate appears to be independent of the acetylation level and found none of them convincing. Implications for brown rot decay mechanisms and future research are discussed.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1638
Author(s):  
George I. Mantanis ◽  
Charalampos Lykidis ◽  
Antonios N. Papadopoulos

In this research, acetylated wood (Accoya) was tested in ground contact in central Greece. After ten years of exposure during a ground stake test, acetylated pine wood (Pinus radiata) stakes, with a 20% acetyl weight gain, were completely intact and showed no visual decay (decay rating: 0). However, the key mechanical properties of Accoya wood, that is, modulus of elasticity (MOE) and modulus of rupture (MOR) after 10 years of ground contact, were significantly reduced by 32.8% and 29.6%, respectively, despite an excellent visual result since no evidence of fungal attack was identified. This contradiction could possibly indicate that the hallmarks of decay, i.e., brown-rot decay of acetylated wood can be the significant loss of mechanical properties before decay is actually visible.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 299 ◽  
Author(s):  
Samuel L. Zelinka ◽  
Grant T. Kirker ◽  
Amy B. Bishell ◽  
Samuel V. Glass

Acetylation is one of the most common types of wood modification and is commercially available throughout the world. Many studies have shown that acetylated wood is decay resistant at high levels of acetylation. Despite its widespread use, the mechanism by which acetylation prevents decay is still not fully understood. It is well known that at a given water activity, acetylation reduces the equilibrium moisture content of the wood cell wall. Furthermore, linear relationships have been found between the acetylation weight percent gain (WPG), wood moisture content, and the amount of mass loss in decay tests. This paper examines the relationships between wood moisture content and fungal growth in wood, with various levels of acetylation, by modifying the soil moisture content of standard soil block tests. The goal of the research is to determine if the reduction in fungal decay of acetylated wood is solely due to the reduction in moisture content or if there are additional antifungal effects of this chemical treatment. While a linear trend was observed between moisture content and mass loss caused by decay, it was not possible to separate out the effect of acetylation from fungal moisture generation. The data show significant deviations from previously proposed models for fungal moisture generation and suggest that these models cannot account for active moisture transport by the fungus. The study helps to advance our understanding of the role of moisture in the brown rot decay of modified wood.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1117 ◽  
Author(s):  
Martina Kölle ◽  
Rebecka Ringman ◽  
Annica Pilgård

Acetylation has been shown to delay fungal decay, but the underlying mechanisms are poorly understood. Brown-rot fungi, such as Rhodonia placenta (Fr.) Niemelä, K.H. Larss. & Schigel, degrade wood in two steps, i.e., oxidative depolymerization followed by secretion of hydrolytic enzymes. Since separating the two degradation steps has been proven challenging, a new sample design was applied to the task. The aim of this study was to compare the expression of 10 genes during the initial decay phase in wood and wood acetylated to three different weight percentage gains (WPG). The results showed that not all genes thought to play a role in initiating brown-rot decay are upregulated. Furthermore, the results indicate that R. placenta upregulates an increasing number of genes involved in the oxidative degradation phase with increasing WPG.


2019 ◽  
Author(s):  
James Skelton ◽  
Andrew Loyd ◽  
Jason A. Smith ◽  
Robert A. Blanchette ◽  
Benjamin W. Held ◽  
...  

Throughout forests worldwide, bark and ambrosia beetles inoculate dead and dying trees with symbiotic fungi. We experimentally determined the effects of three common and widely distributed ascomycete symbionts, and one introduced Asian basidiomycete symbiont on the decay of pine sapwood. Ascomycetes caused less than 5% mass loss and no structural degradation, whereas the basidiomycete Flavodon ambrosius caused nearly 15% mass loss and visible degradation of wood structure. In co-inoculation experiments, the beetle symbionts Ophiostoma ips and Raffaelea fusca reduced white and brown rot decay through competition with Ganoderma curtisii and Phaeolus schweinitzii, respectively. The inhibitory effects of O. ips and R. fusca on decay were negated when co-inoculated with F. ambrosius, suggesting that widespread introduction of this beetle symbiont could alter forest carbon fluxes. In contrast to the predominant forest biology narrative, most bark and ambrosia beetles introduce fungi that delay rather than facilitate tree biomass recycling.


2019 ◽  
Author(s):  
James Skelton ◽  
Andrew Loyd ◽  
Jason A. Smith ◽  
Robert A. Blanchette ◽  
Benjamin W. Held ◽  
...  

Throughout forests worldwide, bark and ambrosia beetles inoculate dead and dying trees with symbiotic fungi. We experimentally determined the effects of three common and widely distributed ascomycete symbionts, and one introduced Asian basidiomycete symbiont on the decay of pine sapwood. Ascomycetes caused less than 5% mass loss and no structural degradation, whereas the basidiomycete Flavodon ambrosius caused nearly 15% mass loss and visible degradation of wood structure. In co-inoculation experiments, the beetle symbionts Ophiostoma ips and Raffaelea fusca reduced white and brown rot decay through competition with Ganoderma curtisii and Phaeolus schweinitzii, respectively. The inhibitory effects of O. ips and R. fusca on decay were negated when co-inoculated with F. ambrosius, suggesting that widespread introduction of this beetle symbiont could alter forest carbon fluxes. In contrast to the predominant forest biology narrative, most bark and ambrosia beetles introduce fungi that delay rather than facilitate tree biomass recycling.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tiina Belt ◽  
Michael Altgen ◽  
Mikko Mäkelä ◽  
Tuomas Hänninen ◽  
Lauri Rautkari

2019 ◽  
Vol 53 (2) ◽  
pp. 291-311 ◽  
Author(s):  
Olav Aaseth Hegnar ◽  
Barry Goodell ◽  
Claus Felby ◽  
Lars Johansson ◽  
Nicole Labbé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document