scholarly journals Transcriptome of a Nitrosomonas europaea Mutant with a Disrupted Nitrite Reductase Gene (nirK)

2006 ◽  
Vol 72 (6) ◽  
pp. 4450-4454 ◽  
Author(s):  
Catherine Mee-Hie Cho ◽  
Tingfen Yan ◽  
Xueduan Liu ◽  
Liyou Wu ◽  
Jizhong Zhou ◽  
...  

ABSTRACT Global gene expression was compared between the Nitrosomonas europaea wild type and a nitrite reductase-deficient mutant using a genomic microarray. Forty-one genes were differentially regulated between the wild type and the nirK mutant, including the nirK operon, genes for cytochrome c oxidase, and seven iron uptake genes. Relationships of differentially regulated genes to the nirK mutant phenotype are discussed.

2008 ◽  
Vol 98 (10) ◽  
pp. 1099-1106 ◽  
Author(s):  
Y. Iida ◽  
T. Kurata ◽  
Y. Harimoto ◽  
T. Tsuge

Fusarium oxysporum produces three kinds of asexual spores, microconidia, macroconidia, and chlamydospores. We previously found that the transcript level of the nitrite reductase gene of F. oxysporum, named FoNIIA, was markedly upregulated during conidiation compared with during vegetative growth. FoNIIA was also found to be positively regulated by Ren1 that is a transcription regulator controlling development of microconidia and macroconidia. In this study, we analyzed the function of FoNIIA in conidiation of F. oxysporum. Conidiation cultures showed markedly higher level of accumulation of FoNiiA protein as well as FoNIIA mRNA than vegetative growth cultures. FoNIIA protein was significantly decreased in cultures of the REN1 disruption mutant compared with that of the wild type. These results confirmed that FoNIIA expression is upregulated during conidiation and is positively regulated by REN1. The FoNIIA disruption mutants produced microconidia, macroconidia, and chlamydospores, which were morphologically indistinguishable from those of the wild type. The mutants, however, produced significantly fewer macroconidia than the wild type, although the wild type and mutant strains produced similar numbers of microconidia and chlamydospores. These results demonstrate that nitrite reductase is involved in quantitative control of macroconidium formation as well as nitrate utilization in F. oxysporum.


1991 ◽  
Vol 17 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Eduard Back ◽  
William Dunne ◽  
Alois Schneiderbauer ◽  
Anic de Framond ◽  
Rajeev Rastogi ◽  
...  

2011 ◽  
Vol 37 (8) ◽  
pp. 1406-1414
Author(s):  
Xiao-Yan SHI ◽  
Yan-Da ZENG ◽  
Shi-Long LI ◽  
Yu-Bo WANG ◽  
Feng-Ming MA ◽  
...  

2007 ◽  
Vol 189 (21) ◽  
pp. 7829-7840 ◽  
Author(s):  
Tina C. Summerfield ◽  
Louis A. Sherman

ABSTRACT We report on differential gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803 after light-dark transitions in wild-type, ΔsigB, and ΔsigD strains. We also studied the effect of day length in the presence of glucose on a ΔsigB ΔsigE mutant. Our results indicated that the absence of SigB or SigD predominately altered gene expression in the dark or in the light, respectively. In the light, approximately 350 genes displayed transcript levels in the ΔsigD strain that were different from those of the wild type, with over 200 of these up-regulated in the mutant. In the dark, removal of SigB altered more than 150 genes, and the levels of 136 of these were increased in the mutant compared to those in the wild type. The removal of both SigB and SigE had a major impact on gene expression under mixotrophic growth conditions and resulted in the inability of cells to grow in the presence of glucose with 8-h light and 16-h dark cycles. Our results indicated the importance of group II σ factors in the global regulation of transcription in this organism and are best explained by using the σ cycle paradigm with the stochastic release model described previously (R. A. Mooney, S. A. Darst, and R. Landick, Mol. Cell 20:335-345, 2005). We combined our results with the total protein levels of the σ factors in the light and dark as calculated previously (S. Imamura, S. Yoshihara, S. Nakano, N. Shiozaki, A. Yamada, K. Tanaka, H. Takahashi, M. Asayama, and M. Shirai, J. Mol. Biol. 325:857-872, 2003; S. Imamura, M. Asayama, H. Takahashi, K. Tanaka, H. Takahashi, and M. Shirai, FEBS Lett. 554:357-362, 2003). Thus, we concluded that the control of global transcription is based on the amount of the various σ factors present and able to bind RNA polymerase.


1995 ◽  
Vol 177 (21) ◽  
pp. 6137-6143 ◽  
Author(s):  
I Suzuki ◽  
H Kikuchi ◽  
S Nakanishi ◽  
Y Fujita ◽  
T Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document