day length
Recently Published Documents


TOTAL DOCUMENTS

1309
(FIVE YEARS 249)

H-INDEX

66
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Mingjie Ma ◽  
Xinghua Yang ◽  
Qing He ◽  
Ali Mamtimin

Abstract Based on meteorological and dust devil intensification observation data in the desert transition zone of the Xiaotang region in the northern margin of the Taklimakan Desert, and combined with GPS sounding in the hinterland of the Taklimakan Desert, this study investigated the improvement and evaluation of the dust devil parameterization scheme. The results indicate that the thermodynamic efficiency of dust devils after improvement was significantly higher than that before improvement, improving the values by 84.7%, 63.9%, 25.6%, 13.3%, 12.5%, 22.7%, 26.6%, 26.9%, and 21.4% for the hourly intervals from 09:00–17:00, respectively. The annual occurrence of dust devils after improvement was 431 times, 55.2% more than before improvement. The correlation coefficients of convective boundary layer height after improvement was 0.96, higher than that before improvement (0.908). After the improvement, the total annual dust emission time was 181.3 h, 95.9% less than that calculated using the day length before improvement, and 31.8% more than that calculated using sunshine time before improvement. After the improvement, the average vertical dust flux of a single dust devil was 0.25 m2/s, 68.8% less than that before improvement. After the improvement, the average annual dust emission from dust devils per square kilometer was 15.3 t/km2, significantly lower than the value of 320.5 t/km2 before the improvement, approximately one-twentieth of the value.


2022 ◽  
Vol 12 ◽  
Author(s):  
Michelle Dang ◽  
Nishara Muthu Arachchige ◽  
Lesley G. Campbell

Cannabis sativa L. is an annual, short-day plant, such that long-day lighting promotes vegetative growth while short-day lighting induces flowering. To date, there has been no substantial investigation on how the switch between these photoperiods influences yield of C. sativa despite the tight correlation that plant size and floral biomass have with the timing of photoperiod switches in indoor growing facilities worldwide. Moreover, there are only casual predictions around how the timing of the photoperiodic switch may affect the production of secondary metabolites, like cannabinoids. Here we use a meta-analytic approach to determine when growers should switch photoperiods to optimize C. sativa floral biomass and cannabinoid content. To this end, we searched through ISI Web of Science for peer-reviewed publications of C. sativa that reported experimental photoperiod durations and results containing cannabinoid concentrations and/or floral biomass, then from 26 studies, we estimated the relationship between photoperiod and yield using quantile regression. Floral biomass was maximized when the long daylength photoperiod was minimized (i.e., 14 days), while THC and CBD potency was maximized under long day length photoperiod for ~42 and 49–50 days, respectively. Our work reveals a yield trade-off in C. sativa between cannabinoid concentration and floral biomass where more time spent under long-day lighting maximizes cannabinoid content and less time spent under long-day lighting maximizes floral biomass. Growers should carefully consider the length of long-day lighting exposure as it can be used as a tool to maximize desired yield outcomes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Frédéric Bouché ◽  
Daniel P. Woods ◽  
Julie Linden ◽  
Weiya Li ◽  
Kevin S. Mayer ◽  
...  

The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.


2022 ◽  
Vol 17 (1) ◽  
pp. 140-151
Author(s):  
Li Wang ◽  
Wan Jiang ◽  
Wuhua Zhang ◽  
Weitong Chen ◽  
Yu Mo ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 466
Author(s):  
Xiao Luo ◽  
Mengnan Yin ◽  
Yuehui He

The developmental switch from a vegetative phase to reproduction (flowering) is essential for reproduction success in flowering plants, and the timing of the floral transition is regulated by various environmental factors, among which seasonal day-length changes play a critical role to induce flowering at a season favorable for seed production. The photoperiod pathways are well known to regulate flowering time in diverse plants. Here, we summarize recent progresses on molecular mechanisms underlying the photoperiod control of flowering in the long-day plant Arabidopsis as well as the short-day plant soybean; furthermore, the conservation and diversification of photoperiodic regulation of flowering in these two species are discussed.


2021 ◽  
Vol 215 (12) ◽  
pp. 77-86
Author(s):  
A Fedotova

Abstract. The article provides an adapted methodology of absorbed dose calculation for the cattle from the territories with long-term man-made contamination. The methodology was developed according to existing regulatory documents in the RF: veterinarian rules VR 13.73.13/12-00, VR 13.5.13/03-00, methodical instructions MI 13.5.13-00, regulation for the state veterinarian control system in radioactive contamination of veterinary surveillance objects in the Russian Federation. The aim of the work is the development of calculation methodology of absorbed radiation doses for the cattle on the territory with long-term man-made isotopes contamination, taking to the account the radionuclide composition of the soil. Methods. The regulatory documents governing absorbed doses calculation has been analyzed; the contribution of external and internal radiation into total annual absorbed dose has been determined. Results. It has been established, that the calculation of external radiation dose needs to be done considering doses in stable and pasture periods. Pasture period dose is a sum of day and night doses considering day length. According to the data of radio ecological situation in Krasnoyarsk krai the internal radiation dose should be calculated as a sum of 137Cs, 90Sr, 60Co, taking to the account different concentration of these radionuclides in green and coarse fodder. Scientific novelty. The methodology of dose calculation for the cattle according to the radio ecological situation in Krasnoyarsk krai has been introduced for the first time. Practical significance. This methodology is recommended for the specialists of radiological departments of veterinarian laboratories and science officers in the field of agricultural radiobiology.


Endocrinology ◽  
2021 ◽  
Author(s):  
Karen J Tonsfeldt ◽  
Pamela L Mellon ◽  
Hanne M Hoffmann

Abstract For 3.5 billion years before electric light was invented in 1879, life on Earth evolved under the pattern of light during the day and darkness during the night. Through evolution, nearly all organisms internalized the temporal rhythm of Earth’s 24-hour rotation and evolved self-sustaining biological clocks with a ~24-hour rhythm. These internal rhythms are called circadian rhythms, and the molecular constituents that generate them are called molecular circadian clocks. Alignment of molecular clocks with the environmental light-dark rhythms optimizes physiology and behavior. This is particularly true for reproductive function, in which seasonal breeders use day-length information to time yearly changes in fertility. However, it is becoming increasingly clear that light-induced disruption of circadian rhythms can negatively impact fertility in non-seasonal breeders as well. In particular, the luteinizing hormone surge promoting ovulation, is sensitive to circadian disruption. In this review, we will summarize our current understanding of the neuronal networks that underlie circadian rhythms and the luteinizing hormone surge.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katarzyna Gawarecka ◽  
Ji Hoon Ahn

In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hayato Yoshioka ◽  
Keiko Kimura ◽  
Yuko Ogo ◽  
Namie Ohtsuki ◽  
Ayako Nishizawa-Yokoi ◽  
...  

Flowering is an important biological process through which plants determine the timing of reproduction. In rice, florigen mRNA is induced more strongly when the day length is shorter than the critical day length through recognition of 30-min differences in the photoperiod. Grain number, plant height, and heading date 7 (Ghd7), which encodes a CCT-domain protein unique to monocots, has been identified as a key floral repressor in rice, and Heading date 1 (Hd1), a rice ortholog of the Arabidopsis floral activator CONSTANS (CO), is another key floral regulator gene. The Hd1 gene product has been shown to interact with the Ghd7 gene product to form a strong floral repressor complex under long-day conditions. However, the mRNA dynamics of these genes cannot explain the day-length responses of their downstream genes. Thus, a real-time monitoring system of these key gene products is needed to elucidate the molecular mechanisms underlying accurate photoperiod recognition in rice. Here, we developed a monitoring system using luciferase (LUC) fusion protein lines derived from the Ghd7-LUC and Hd1-LUC genes. We successfully obtained a functionally complemented gene-targeted line for Ghd7-LUC. Using this system, we found that the Ghd7-LUC protein begins to accumulate rapidly after dawn and reaches its peak more rapidly under a short-day condition than under a long-day condition. Our system provides a powerful tool for revealing the accurate time-keeping regulation system incorporating these key gene products involved in rice photoperiodic flowering.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjaya Gyawali ◽  
Gehendra Bhattarai ◽  
Ainong Shi ◽  
Chris Kik ◽  
Lindsey J. du Toit

Genotype-by-sequencing (GBS) was used to explore the genetic diversity and structure of Spinacia turkestanica, and the selective sweeps involved in domestication of cultivated spinach, S. oleracea, from S. turkestanica. A total 7,065 single nucleotide polymorphisms (SNPs) generated for 16 Spinacia oleracea and 76 S. turkestanica accessions placed the S. oleracea accessions in one group, Q1, and the 76 S. turkestanica accessions, which originated from Central Asia, in two distinct groups, Q2 and Q3. The Q2 group shared greater genetic identity with the S. oleracea accessions, Q1, than the Q3 S. turkestanica group. Likewise, the S. oleracea Q1 group had a smaller Fst (0.008) with the Q2 group than with the Q3 group (Fst = 0.012), and a greater gene flow (Nm = 30.13) with the Q2 group than with the Q3 group (Nm = 21.83). The Q2 accessions originated primarily from Uzbekistan while the Q3 accessions originated mostly from Tajikistan. The Zarafshan Mountain Range appears to have served as a physical barrier that largely separated members of the Q2 and Q3 groups of S. turkestanica. Accessions with admixtures of Q2 and Q3 were collected primarily from lower elevations at the southern end of the Zarafshan Mountain Range in Uzbekistan. Selective sweep regions identified at 32, 49, and 52 Mb on chromosomes 1, 2, and 3, respectively, appear to have played a vital role in the domestication of S. oleracea as they are correlated with important domestication traits, including day length sensitivity for bolting (flowering). High XP-CLR scores at the 52 Mb genomic region of chromosome three suggest that a selective sweep at this region was responsible for early differentiation of S. turkestanica into two groups in Central Asia.


Sign in / Sign up

Export Citation Format

Share Document