transcription regulator
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 56)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yuncong Geng ◽  
Christopher Herrick Bohrer ◽  
Nicolás Yehya ◽  
Hunter Hendrix ◽  
Lior Shachaf ◽  
...  

In Escherichia coli, translocation of RNA polymerase (RNAP) during transcription introduces supercoiling to DNA, which influences the initiation and elongation behaviors of RNAP. To quantify the role of supercoiling in transcription regulation, we develop a spatially resolved supercoiling model of transcription, describing RNAP-supercoiling interactions, topoisomerase activities, stochastic topological domain formation, and supercoiling diffusion in all transcription stages. This model establishes that transcription-induced supercoiling mediates the cooperation of co-transcribing RNAP molecules in highly expressed genes. It reveals that supercoiling transmits RNAP-accessible information through DNA and enables different RNAP molecules to communicate within and between genes. It thus predicts that a topological domain could serve as a transcription regulator, generating substantial transcription bursting and coordinating communications between adjacent genes in the domain. The model provides a quantitative platform for further theoretical and experimental investigations of how genome organization impacts transcription.


2021 ◽  
Author(s):  
Ana Gaspar-Cordeiro ◽  
Catarina Amaral ◽  
Vania Pobre ◽  
Wilson Antunes ◽  
Ana Petronilho ◽  
...  

The synergistic combinations of drugs are promising strategies to boost the effectiveness of current antifungals and thus prevent the emergence of resistance. In this work, we show that copper and the antifungal fluconazole act synergistically against Candida glabrata, an opportunistic pathogenic yeast intrinsically tolerant to fluconazole. Analyses of the transcriptomic profile of C. glabrata after the combination of copper and fluconazole showed that the expression of the multidrug transporter gene CDR1 was decreased, suggesting that fluconazole efflux could be affected. In agreement, we observed that copper inhibits the transactivation of Pdr1, the transcription regulator of multidrug transporters, and leads to the intracellular accumulation of fluconazole. Copper also decreases the transcriptional induction of ergosterol biosynthesis (ERG) genes by fluconazole, which culminates in the accumulation of toxic sterols. Co-treatment of cells with copper and fluconazole should affect the function of proteins located in the plasma membrane, as several ultrastructural alterations, including irregular cell wall and plasma membrane and loss of cell wall integrity, were observed. Finally, we show that the combination of copper and fluconazole downregulates the expression of the gene encoding the zinc-responsive transcription regulator Zap1, which possibly, together with the membrane transporters malfunction, generates zinc depletion. Supplementation with zinc reverts the toxic effect of combining copper with fluconazole, underscoring the importance of this metal in the observed synergistic effect. Overall, this work, while unveiling the molecular basis that supports the use of copper to enhance the effectiveness of fluconazole, paves the way for the development of new metal-based antifungal strategies.


2021 ◽  
Author(s):  
Mo Sun ◽  
Jie Deng ◽  
Andreas Walther

Nature connects multiple fuel-driven chemical/enzymatic reaction networks (CRNs/ERNs) via cross-regulation to hierarchically control biofunctions for a tailored adaption in complex sensory landscapes. In contrast, emerging artificial fuel-driven systems most-ly focus on a single CRN and their implementation to direct self-assembly or material responses. In this work, we introduce a facile example of communication and cross-regulation among multiple DNA-based ERNs regulated by a concatenated RNA transcription regulator. For this purpose, we run two fuel-driven DNA-based ERNs by concurrent NAD+-fueled ligation and restriction via endo-nucleases (REases) in parallel. ERN one allows for the dynamic steady-state formation of the promoter sequence for T7 RNA poly-merase, which activates RNA transcription. The produced RNA regulator can repress or promote the second ERN via RNA-mediated strand displacement. Furthermore, adding RNase H to degrade the produced RNA can restart the reaction or tune the lag time of two ERNs, giving rise to a repression-recovery and promotion-stop processes. We believe that concatenation of multiple CRNs provides a basis for the design of more elaborate autonomous regulatory mechanisms in systems chemistry and synthetic biology.


mBio ◽  
2021 ◽  
Author(s):  
Giovanni Gallo ◽  
Ioannis Mougiakos ◽  
Mauricio Bianco ◽  
Miriam Carbonaro ◽  
Andrea Carpentieri ◽  
...  

We here describe the discovery of an unknown protein by using a proteomic approach with a functionally related protein as bait. Remarkably, we successfully obtained a novel type of enzyme through the interaction with a transcription regulator controlling the expression of this enzyme.


mBio ◽  
2021 ◽  
Author(s):  
Philipp Reuter-Weissenberger ◽  
Juliane Meir ◽  
J. Christian Pérez

Candida albicans is a fungus that resides on various human mucosal surfaces. Individuals with debilitated immune systems are prone to develop C. albicans infections, which can range in severity from mucosal disease (e.g., oral thrush in AIDS patients) to life-threatening conditions (e.g., deep-seated, disseminated infections in patients undergoing organ transplants).


2021 ◽  
Vol 16 (10) ◽  
pp. S1200-S1201
Author(s):  
J. Deng ◽  
J. Xu ◽  
F. Zhong ◽  
J. Tang ◽  
K. Fang ◽  
...  

Author(s):  
Pieter De Bruyn ◽  
Maruša Prolič-Kalinšek ◽  
Alexandra Vandervelde ◽  
Milan Malfait ◽  
Yann G.-J. Sterckx ◽  
...  

paaR2–paaA2–parE2 is a three-component toxin–antitoxin module found in prophage CP-993P of Escherichia coli O157:H7. Transcription regulation of this module occurs via the 123-amino-acid regulator PaaR2, which forms a large oligomeric structure. Despite appearing to be well folded, PaaR2 withstands crystallization, as does its N-terminal DNA-binding domain. Native mass spectrometry was used to screen for nanobodies that form a unique complex and stabilize the octameric structure of PaaR2. One such nanobody, Nb33, allowed crystallization of the protein. The resulting crystals belong to space group F432, with unit-cell parameter a = 317 Å, diffract to 4.0 Å resolution and are likely to contain four PaaR2 monomers and four nanobody monomers in the asymmetric unit. Crystals of two truncates containing the N-terminal helix–turn–helix domain also interact with Nb33, and the corresponding co-crystals diffracted to 1.6 and 1.75 Å resolution.


2021 ◽  
Vol 118 (39) ◽  
pp. e2106048118
Author(s):  
Hua Qin ◽  
Zhengzhong Zou ◽  
David Anderson ◽  
Yu Sang ◽  
Dustin Higashi ◽  
...  

Genome evolution is an essential and stringently regulated aspect of biological fitness. For bacteria, natural competence is one of the principal mechanisms of genome evolution and is frequently subject to multiple layers of regulation derived from a plethora of environmental and physiological stimuli. Here, we present a regulatory mechanism that illustrates how such disparate stimuli can be integrated into the Streptococcus mutans natural competence phenotype. S. mutans possesses an intriguing, but poorly understood ability to coordinately control its independently regulated natural competence and bacteriocin genetic pathways as a means to acquire DNA released from closely related, bacteriocin-susceptible streptococci. Our results reveal how the bacteriocin-specific transcription activator BrsR directly mediates this coordination by serving as an anti-adaptor protein responsible for antagonizing the proteolysis of the inherently unstable, natural competence-specific alternative sigma factor ComX. This BrsR ability functions entirely independent of its transcription regulator function and directly modulates the timing and severity of the natural competence phenotype. Additionally, many of the DNA uptake proteins produced by the competence system were surprisingly found to possess adaptor abilities, which are employed to terminate the BrsR regulatory circuit via negative feedback. BrsR–competence protein heteromeric complexes directly inhibit nascent brsR transcription as well as stimulate the Clp-dependent proteolysis of extant BrsR proteins. This study illustrates how critical genetic regulatory abilities can evolve in a potentially limitless variety of proteins without disrupting their conserved ancestral functions. These unrecognized regulatory abilities are likely fundamental for transducing information through complex genetic networks.


Sign in / Sign up

Export Citation Format

Share Document