scholarly journals Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments.

1996 ◽  
Vol 62 (4) ◽  
pp. 1405-1415 ◽  
Author(s):  
A Teske ◽  
C Wawer ◽  
G Muyzer ◽  
N B Ramsing
2005 ◽  
Vol 71 (5) ◽  
pp. 2325-2330 ◽  
Author(s):  
Shabir A. Dar ◽  
J. Gijs Kuenen ◽  
Gerard Muyzer

ABSTRACT Here, we describe a three-step nested-PCR-denaturing gradient gel electrophoresis (DGGE) strategy to detect sulfate-reducing bacteria (SRB) in complex microbial communities from industrial bioreactors. In the first step, the nearly complete 16S rRNA gene was amplified using bacterial primers. Subsequently, this product was used as a template in a second PCR with group-specific SRB primers. A third round of amplification was conducted to obtain fragments suitable for DGGE. The largest number of bands was observed in DGGE patterns of products obtained with primers specific for the Desulfovibrio-Desulfomicrobium group, indicating a large diversity of these SRBs. In addition, members of other phylogenetic SRB groups, i.e., Desulfotomaculum, Desulfobulbus, and Desulfococcus-Desulfonema-Desulfosarcina, were detected. Bands corresponding to Desulfobacterium and Desulfobacter were not detected in the bioreactor samples. Comparative sequence analysis of excised DGGE bands revealed the identity of the community members. The developed three-step PCR-DGGE strategy is a welcome tool for studying the diversity of sulfate-reducing bacteria.


1974 ◽  
Vol 20 (11) ◽  
pp. 1487-1492 ◽  
Author(s):  
Q. D. Skinner ◽  
J. C. Adams ◽  
P. A. Rechard ◽  
A. A. Beetle

Nitrate-reducing bacteria, sulfate-reducing bacteria, fluorescent bacteria, and the total viable count were enumerated in three stream systems within a high mountain watershed over a period of two winters and two summers from 1970 to 1972. Spread plate and most probable number procedures showed that the number of fluorescent bacteria, sulfate-reducing bacteria, nitrate-reducing bacteria, and the total count were generally constant throughout the year at the lowest sampling site on the stream systems. However, in some cases and for short periods of time, the numbers of these bacteria appeared to be influenced by recreational use of the land and stream flow. For example, denitrifying bacteria increased in number during the winter recreational period and gave the lowest counts in July.


2003 ◽  
Vol 69 (3) ◽  
pp. 1847-1853 ◽  
Author(s):  
Y. Meriah Arias ◽  
Bradley M. Tebo

ABSTRACT In time course experiments, bacterial community compositions were compared between a sulfidogenic and two nonsulfidogenic Cr(VI)-reducing consortia enriched from metal-contaminated sediments. The consortia were subjected to 0 and 0.85 mM or 1.35 mM Cr(VI), and Cr(VI) reduction, growth, and denaturing gradient gel electrophoresis profiles of PCR products of small-subunit (16S) ribosomal genes were compared. Results showed that although Cr(VI) was completely reduced by the three consortia, Cr(VI) inhibited cell growth, with sulfate-reducing bacteria being particularly sensitive to Cr(VI) toxicity relative to other bacteria in the consortia.


1998 ◽  
Vol 64 (5) ◽  
pp. 1700-1707 ◽  
Author(s):  
Flemming Vester ◽  
Kjeld Ingvorsen

ABSTRACT A greatly improved most-probable-number (MPN) method for selective enumeration of sulfate-reducing bacteria (SRB) is described. The method is based on the use of natural media and radiolabeled sulfate (35SO4 2−). The natural media used consisted of anaerobically prepared sterilized sludge or sediment slurries obtained from sampling sites. The densities of SRB in sediment samples from Kysing Fjord (Denmark) and activated sludge were determined by using a normal MPN (N-MPN) method with synthetic cultivation media and a tracer MPN (T-MPN) method with natural media. The T-MPN method with natural media always yielded significantly higher (100- to 1,000-fold-higher) MPN values than the N-MPN method with synthetic media. The recovery of SRB from environmental samples was investigated by simultaneously measuring sulfate reduction rates (by a35S-radiotracer method) and bacterial counts by using the T-MPN and N-MPN methods, respectively. When bacterial numbers estimated by the T-MPN method with natural media were used, specific sulfate reduction rates (qSO4 2−) of 10−14to 10−13 mol of SO4 2−cell−1 day−1 were calculated, which is within the range of qSO4 2− values previously reported for pure cultures of SRB (10−15 to 10−14 mol of SO4 2− cell−1day−1). qSO4 2− values calculated from N-MPN values obtained with synthetic media were several orders of magnitude higher (2 � 10−10 to 7 � 10−10 mol of SO4 2−cell−1 day−1), showing that viable counts of SRB were seriously underestimated when standard enumeration media were used. Our results demonstrate that the use of natural media results in significant improvements in estimates of the true numbers of SRB in environmental samples.


2005 ◽  
Vol 71 (9) ◽  
pp. 5348-5353 ◽  
Author(s):  
Christopher G. Struchtemeyer ◽  
Mostafa S. Elshahed ◽  
Kathleen E. Duncan ◽  
Michael J. McInerney

ABSTRACT The anaerobic metabolism of acetate was studied in sediments and groundwater from a gas condensate-contaminated aquifer in an aquifer where geochemical evidence implicated sulfate reduction and methanogenesis as the predominant terminal electron-accepting processes. Most-probable-number tubes containing acetate and microcosms containing either [2-14C]acetate or [U-14C]acetate produced higher quantities of CH4 compared to CO2 in the presence or absence of sulfate.14CH4 accounted for 70 to 100% of the total labeled gas in the [14C]acetate microcosms regardless of whether sulfate was present or not. Denaturing gradient gel electrophoresis of the acetate enrichments both with and without sulfate using Archaea-specific primers showed identical predominant bands that had 99% sequence similarity to members of Methanosaetaceae. Clone libraries containing archaeal 16S rRNA gene sequences amplified from sediment from the contaminated portion of the aquifer showed that 180 of the 190 clones sequenced belonged to the Methanosaetaceae. The production of methane and the high frequency of sequences from the Methanosaetaceae in acetate enrichments with and without sulfate indicate that aceticlastic methanogenesis was the predominant fate of acetate at this site even though sulfate-reducing bacteria would be expected to consume acetate in the presence of sulfate.


1998 ◽  
Vol 64 (8) ◽  
pp. 2943-2951 ◽  
Author(s):  
Andreas Teske ◽  
Niels B. Ramsing ◽  
Kirsten Habicht ◽  
Manabu Fukui ◽  
Jan Küver ◽  
...  

ABSTRACT The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 106 and 107 cultivable sulfate-reducing bacteria ml−1 and showed sulfate reduction rates between 1,000 and 2,200 nmol ml−1 day−1, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 104 to 106cells ml−1. A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO2 from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO2 demand of the mat.


1999 ◽  
Vol 65 (9) ◽  
pp. 4230-4233 ◽  
Author(s):  
Christian Knoblauch ◽  
Bo Barker Jørgensen ◽  
Jens Harder

ABSTRACT The numbers of sulfate reducers in two Arctic sediments with in situ temperatures of 2.6 and −1.7°C were determined. Most-probable-number counts were higher at 10°C than at 20°C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than their mesophilic counterparts at similarly low temperatures.


1999 ◽  
Vol 65 (11) ◽  
pp. 5117-5123 ◽  
Author(s):  
Kirsten Küsel ◽  
Holly C. Pinkart ◽  
Harold L. Drake ◽  
Richard Devereux

ABSTRACT Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii andThalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacteriumand Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Wahyu Wilopo ◽  
Keiko Sasaki ◽  
Tsuyoshi Hirajim

Permeable reactive barrier column tests were performed to investigate whether anaerobic bacteria in sheep manure could help remove As from groundwater. One column served as a control and was packed with zero-valent iron (ZVI), compost leaf, wood chips, glass beads, and gravel, after which it was sterilized. The other (‘inoculated column’) was packed with the same ingredients, with the addition of sheep manure as a source of anaerobic bacteria. Simulated As-contaminated groundwater was prepared based on groundwater samples from Sumbawa Island, Indonesia, but with the arsenic concentration adjusted to 50 mg/L. The inoculated column was found to remove As more effectively from the simulated groundwater than the sterilized one. A gradual decrease in sulfate concentration was observed in the inoculated column at the rate of 0.26 mmol of sulfate/L/day, suggesting that there was sulfate-reducing activity in the microbial population. In addition, the sulfur isotope ratio showed -4.3 (‰) and 0.2 (‰) in influent and effluent, respectively, indicating that sulfate-reducing bacteria (SRB) consumed δ32S preferentially. Using population size estimates from the most probable number (MPN) method, the population of SRB was found to increase with distance traveled in the column. Profiling the community composition of the bacteria in different fractions of the inoculated column using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) on 16S rRNA sequences suggested that a majority of bacteria were various Clostridium species and one species of Proteobacteria, Geobacter metallireducens GS-15. Some of them may contribute to the removal of arsenic.Keywords: Sheep manure, zero valence iron, arsenic, immobilization, sulfate-reducing bacteria


Sign in / Sign up

Export Citation Format

Share Document