scholarly journals Use of Combined Microautoradiography and Fluorescence In Situ Hybridization To Determine Carbon Metabolism in Mixed Natural Communities of Uncultured Bacteria from the GenusAchromatium

2000 ◽  
Vol 66 (10) ◽  
pp. 4518-4522 ◽  
Author(s):  
N. D. Gray ◽  
R. Howarth ◽  
R. W. Pickup ◽  
J. Gwyn Jones ◽  
I. M. Head

ABSTRACT Combined microautoradiography and fluorescence in situ hybridization (FISH) was used to investigate carbon metabolism in uncultured bacteria from the genus Achromatium. All of theAchromatium species identified in a freshwater sediment from Rydal Water, Cumbria, United Kingdom, which were distinguishable only by FISH, assimilated both [14C]bicarbonate and [14C]acetate. This extends previous findings thatAchromatium spp. present at another location could only utilize organic carbon sources. Achromatium spp., therefore, probably exhibit a range of physiologies, i.e., facultative chemolithoautotrophy, mixotrophy, and chemoorganoheterotrophy, similar to other large sulfur bacteria (e.g., Beggiatoa spp.).

2002 ◽  
Vol 68 (2) ◽  
pp. 933-937 ◽  
Author(s):  
Christine Moissl ◽  
Christian Rudolph ◽  
Robert Huber

ABSTRACT A recently discovered bacterial/archaeal association, growing in a string-of-pearls-like structure, thrives in the cold (∼10�C) sulfidic marsh water of the Sippenauer Moor near Regensburg, Bavaria, Germany. It forms characteristic, macroscopically visible globules, the pearls, containing microcolonies of novel euryarchaeota, which are surrounded by mainly filamentous bacteria (C. Rudolph, G. Wanner, and R. Huber, Appl. Environ. Microbiol. 67:2336-2344, 2001). Single pearls in series are connected by white threads. Here we report the first detailed molecular investigations of the taxonomic affiliation of the bacteria contributing to the strings of pearls. Phylogenetic analysis showed the dominance of a single phylotype (clone sipK4) within single pearls most closely related to Thiothrix unzii. The presence of Thiothrix sipK4 as a major constituent of single pearls and of the pearl-connecting white threads was verified by fluorescence in situ hybridization.


2002 ◽  
Vol 68 (8) ◽  
pp. 4081-4089 ◽  
Author(s):  
Sven Poppert ◽  
Andreas Essig ◽  
Reinhard Marre ◽  
Michael Wagner ◽  
Matthias Horn

ABSTRACT Chlamydiae are important pathogens of humans and animals but diagnosis of chlamydial infections is still hampered by inadequate detection methods. Fluorescence in situ hybridization (FISH) using rRNA-targeted oligonucleotide probes is widely used for the investigation of uncultured bacteria in complex microbial communities and has recently also been shown to be a valuable tool for the rapid detection of various bacterial pathogens in clinical specimens. Here we report on the development and evaluation of a hierarchic probe set for the specific detection and differentiation of chlamydiae, particularly C. pneumoniae, C. trachomatis, C. psittaci, and the recently described chlamydia-like bacteria comprising the novel genera Neochlamydia and Parachlamydia. The specificity of the nine newly developed probes was successfully demonstrated by in situ hybridization of experimentally infected amoebae and HeLa 229 cells, including HeLa 229 cells coinfected with C. pneumoniae and C. trachomatis. FISH reliably stained chlamydial inclusions as early as 12 h postinfection. The sensitivity of FISH was further confirmed by combination with direct fluorescence antibody staining. In contrast to previously established detection methods for chlamydiae, FISH was not susceptible to false-positive results and allows the detection of all recognized chlamydiae in one single step.


2006 ◽  
Vol 175 (4S) ◽  
pp. 287-288 ◽  
Author(s):  
Juliann M. Dziubinski ◽  
Michael F. Sarosdy ◽  
Paul R. Kahn ◽  
Mark D. Ziffer ◽  
William R. Love ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 156-156
Author(s):  
Chandler D. Dora ◽  
Yasushi Kondo ◽  
Fusheng X. Lan ◽  
Jeffrey M. Slezak ◽  
Erik J. Bergstralh ◽  
...  

2014 ◽  
pp. 15-20
Author(s):  
Van Huy Tran ◽  
Thi Minh Thi Ha ◽  
Trung Nghia Van ◽  
Viet Nhan Nguyen ◽  
Phan Tuong Quynh Le ◽  
...  

Background: HER-2/neu is a predictive biomarker for treatment of gastric cancer using trastuzumab in combination with chemotherapy. This study aimed to evaluate the status of HER-2/neu gene amplification using fluorescence in situ hybridization (FISH) in gastric cancer. Patients and methods: thirty six gastric cancer patients were assessed HER-2/neu gene amplification by FISH using PathVysionTM HER-2 DNA Probe kit (including HER-2/neu probe and CEP-17 probe) with biopsy and surgical specimens. Results: The HER-2/neu gene amplification was observed in three cases (8.3%), the HER-2/neu gene amplification rate in Lauren’s intestinal-type and diffuse-type were 11.8% and 5.2%, respectively. Conclusion: We applied successfully FISH technique with gastric cancer tissue samples. This technique could be performed as routine test in gastric cancer in order to select patients that benefit from trastuzumab in combination with chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document