streptomyces clavuligerus
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 39)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Juan Pablo Gomez-Escribano ◽  
Lis Algora Gallardo ◽  
Kenan A. J. Bozhüyük ◽  
Steven G. Kendrew ◽  
Benjamin D. Huckle ◽  
...  

Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid’s parB gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.


2021 ◽  
Vol 2049 (1) ◽  
pp. 012073
Author(s):  
L Ariza ◽  
J Rubio ◽  
V Moreno ◽  
L Niño ◽  
G Gelves

Abstract Clavulanic acid is a β-lactam inhibitor produced by fermentation with Streptomyces clavuligerus cells, and it is usually used to prevent resistance to certain antibiotics. However, CA production is limited at the bioreactor level due to its low performance. The latter generates expensive processes and challenging to operate on a large scale. In this research, a mathematical model is proposed to simulate the clavulanic acid production from an operation strategy based on continuous mode. The preceding, to identify trends allowing to improve the productivity of the mentioned metabolite. Results are compared to the traditional operating batch mode. According to the results found, the final concentration of the β-lactam inhibitor could be increased by up to 60% regarding the simulated data in batch mode. Results obtained demonstrate the importance of computational techniques in bioprocess engineering since bioprocess simulation focuses on identifying critical operating parameters as a starting point in antibiotic production optimization.


2021 ◽  
Vol 8 (8) ◽  
pp. 103
Author(s):  
Howard Ramirez-Malule ◽  
Víctor A. López-Agudelo ◽  
David Gómez-Ríos ◽  
Silvia Ochoa ◽  
Rigoberto Ríos-Estepa ◽  
...  

Streptomyces clavuligerus (S. clavuligerus) has been widely studied for its ability to produce clavulanic acid (CA), a potent inhibitor of β-lactamase enzymes. In this study, S. clavuligerus cultivated in 2D rocking bioreactor in fed-batch operation produced CA at comparable rates to those observed in stirred tank bioreactors. A reduced model of S. clavuligerus metabolism was constructed by using a bottom-up approach and validated using experimental data. The reduced model was implemented for in silico studies of the metabolic scenarios arisen during the cultivations. Constraint-based analysis confirmed the interrelations between succinate, oxaloacetate, malate, pyruvate, and acetate accumulations at high CA synthesis rates in submerged cultures of S. clavuligerus. Further analysis using shadow prices provided a first view of the metabolites positive and negatively associated with the scenarios of low and high CA production.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiffany Turner ◽  
Guillermo Ruiz ◽  
Johanne Gerstel ◽  
Jeffrey Langland

Abstract Background β-lactam antibiotics are a class of broad-spectrum antibiotics consisting of all antibiotic agents that contain a β-lactam ring in their molecular structures. β-lactam antibiotics are only known to be isolated from fungi (e.g. Acremonium chrysogenum, Penicillium chrysogenum and Aspergillus nidulans) and bacteria (e.g. Streptomyces clavuligerus). We have shown that botanical extracts prepared from Larrea tridentata have strong antimicrobial activity against several bacteria, including members of Staphylococcus and Streptococcus genera. Methods Through resistance studies, inhibitor assays, and ELISA testing, we demonstrated L. tridentata extracts may contain a β-lactam type antibiotic activity. Results Based on the estimated β-lactam concentration within the extract, the antimicrobial activity of the L. tridentata extract was approximately 2000–8000-fold greater against Staphylococcus as compared to other β-lactams, penicillin or ampicillin. In the L. tridentata extract, this increased activity was found to be associated with the likely presence of a cofactor leading to increased potentiation of the β-lactam activity. This potentiation activity was also observed to enhance the activity of exogenously added natural penicillin antibiotics. Conclusions Although constituents were not isolated in this study, the results obtained strongly support the presence of β-lactam type antibiotic activity and antibiotic potentiation activity present in ethanolic extracts prepared from L. tridentata.


Author(s):  
Martin Beyß ◽  
Victor D. Parra-Peña ◽  
Howard Ramirez-Malule ◽  
Katharina Nöh

13C metabolic flux analysis (MFA) has become an indispensable tool to measure metabolic reaction rates (fluxes) in living organisms, having an increasingly diverse range of applications. Here, the choice of the13C labeled tracer composition makes the difference between an information-rich experiment and an experiment with only limited insights. To improve the chances for an informative labeling experiment, optimal experimental design approaches have been devised for13C-MFA, all relying on some a priori knowledge about the actual fluxes. If such prior knowledge is unavailable, e.g., for research organisms and producer strains, existing methods are left with a chicken-and-egg problem. In this work, we present a general computational method, termed robustified experimental design (R-ED), to guide the decision making about suitable tracer choices when prior knowledge about the fluxes is lacking. Instead of focusing on one mixture, optimal for specific flux values, we pursue a sampling based approach and introduce a new design criterion, which characterizes the extent to which mixtures are informative in view of all possible flux values. The R-ED workflow enables the exploration of suitable tracer mixtures and provides full flexibility to trade off information and cost metrics. The potential of the R-ED workflow is showcased by applying the approach to the industrially relevant antibiotic producer Streptomyces clavuligerus, where we suggest informative, yet economic labeling strategies.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Soonkyu Hwang ◽  
Namil Lee ◽  
Donghui Choe ◽  
Yongjae Lee ◽  
Woori Kim ◽  
...  

ABSTRACT Identification of transcriptional regulatory elements in the GC-rich Streptomyces genome is essential for the production of novel biochemicals from secondary metabolite biosynthetic gene clusters (smBGCs). Despite many efforts to understand the regulation of transcription initiation in smBGCs, information on the regulation of transcription termination and posttranscriptional processing remains scarce. In this study, we identified the transcriptional regulatory elements in β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27064 by determining a total of 1,427 transcript 3′-end positions (TEPs) using the term-seq method. Termination of transcription was governed by three classes of TEPs, of which each displayed unique sequence features. The data integration with transcription start sites and transcriptome data generated 1,648 transcription units (TUs) and 610 transcription unit clusters (TUCs). TU architecture showed that the transcript abundance in TU isoforms of a TUC was potentially affected by the sequence context of their TEPs, suggesting that the regulatory elements of TEPs could control the transcription level in additional layers. We also identified TU features of a xenobiotic response element (XRE) family regulator and DUF397 domain-containing protein, particularly showing the abundance of bidirectional TEPs. Finally, we found that 189 noncoding TUs contained potential cis- and trans-regulatory elements that played a major role in regulating the 5′ and 3′ UTR. These findings highlight the role of transcriptional regulatory elements in transcription termination and posttranscriptional processing in Streptomyces sp. IMPORTANCE Streptomyces sp. is a great source of bioactive secondary metabolites, including antibiotics, antifungal agents, antiparasitic agents, immunosuppressant compounds, and other drugs. Secondary metabolites are synthesized via multistep conversions of the precursor molecules from primary metabolism, governed by multicomplex enzymes from secondary metabolite biosynthetic gene clusters. As their production is closely related with the growth phase and dynamic cellular status in response to various intra- and extracellular signals, complex regulatory systems tightly control the gene expressions related to secondary metabolism. In this study, we determined genome-wide transcript 3′-end positions and transcription units in the β-lactam antibiotic producer Streptomyces clavuligerus ATCC 27064 to elucidate the transcriptional regulatory elements in transcription termination and posttranscriptional processing by integration of multiomics data. These unique features, such as transcript 3′-end sequence, potential riboregulators, and potential 3′-untranslated region (UTR) cis-regulatory elements, can be potentially used to design engineering tools that can regulate the transcript abundance of genes for enhancing secondary metabolite production.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 239
Author(s):  
Arshad Ali Shaikh ◽  
Louis-Felix Nothias ◽  
Santosh K. Srivastava ◽  
Pieter C. Dorrestein ◽  
Kapil Tahlan

Bacterial specialized metabolites are of immense importance because of their medicinal, industrial, and agricultural applications. Streptomyces clavuligerus is a known producer of such compounds; however, much of its metabolic potential remains unknown, as many associated biosynthetic gene clusters are silent or expressed at low levels. The overexpression of ribosome recycling factor (frr) and ribosome engineering (induced rpsL mutations) in other Streptomyces spp. has been reported to increase the production of known specialized metabolites. Therefore, we used an overexpression strategy in combination with untargeted metabolomics, molecular networking, and in silico analysis to annotate 28 metabolites in the current study, which have not been reported previously in S. clavuligerus. Many of the newly described metabolites are commonly found in plants, further alluding to the ability of S. clavuligerus to produce such compounds under specific conditions. In addition, the manipulation of frr and rpsL led to different metabolite production profiles in most cases. Known and putative gene clusters associated with the production of the observed compounds are also discussed. This work suggests that the combination of traditional strain engineering and recently developed metabolomics technologies together can provide rapid and cost-effective strategies to further speed up the discovery of novel natural products.


Sign in / Sign up

Export Citation Format

Share Document