scholarly journals Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland

2001 ◽  
Vol 67 (9) ◽  
pp. 4242-4248 ◽  
Author(s):  
Viggó Thór Marteinsson ◽  
Sigurbjörg Hauksdóttir ◽  
Cédric F. V. Hobel ◽  
Hrefna Kristmannsdóttir ◽  
Gudmundur Oli Hreggvidsson ◽  
...  

ABSTRACT Geothermal energy has been harnessed and used for domestic heating in Iceland. In wells that are typically drilled to a depth of 1,500 to 2,000 m, the temperature of the source water is 50 to 130°C. The bottoms of the boreholes can therefore be regarded as subterranean hot springs and provide a unique opportunity to study the subterranean biosphere. Large volumes of geothermal fluid from five wells and a mixture of geothermal water from 50 geothermal wells (hot tap water) were sampled and concentrated through a 0.2-μm-pore-size filter. Cells were observed in wells RG-39 (91.4°C) and MG-18 (71.8°C) and in hot tap water (76°C), but no cells were detected in wells SN-4, SN-5 (95 to 117°C), and RV-5 (130°C). Archaea and Bacteria were detected by whole-cell fluorescent in situ hybridization. DNAs were extracted from the biomass, and small-subunit rRNA genes (16S rDNAs) were amplified by PCR using primers specific for the Archaea andBacteria domains. The PCR products were cloned and sequenced. The sequence analysis showed 11 new operational taxonomic units (OTUs) out of 14, 3 of which were affiliated with known surface OTUs. Samples from RG-39 and hot tap water were inoculated into enrichment media and incubated at 65 and 85°C. Growth was observed only in media based on geothermal water. 16S rDNA analysis showed enrichments dominated with Desulfurococcales relatives. Two strains belonging to Desulfurococcus mobilis and to theThermus/Deinococcus group were isolated from borehole RG-39. The results indicate that subsurface volcanic zones are an environment that provides a rich subsurface for novel thermophiles.

2012 ◽  
Vol 78 (20) ◽  
pp. 7467-7475 ◽  
Author(s):  
Amy Apprill ◽  
Heather Q. Marlow ◽  
Mark Q. Martindale ◽  
Michael S. Rappé

ABSTRACTRelationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coralPocillopora meandrinawas investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of theAlphaproteobacteria, aPseudoalteromonasspecies of theGammaproteobacteria, and aSynechococcusspecies of theCyanobacteriaphylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination ofP. meandrinaplanulae by fluorescencein situhybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains ofPseudoalteromonasand Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade andSynechococcusdid not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.


2006 ◽  
Vol 72 (1) ◽  
pp. 793-801 ◽  
Author(s):  
Alexandra J Scupham ◽  
Laura L. Presley ◽  
Bo Wei ◽  
Elizabeth Bent ◽  
Natasha Griffith ◽  
...  

ABSTRACT Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.


2000 ◽  
Vol 66 (7) ◽  
pp. 2835-2841 ◽  
Author(s):  
Sigurlaug Skirnisdottir ◽  
Gudmundur O. Hreggvidsson ◽  
Sigridur Hj�rleifsdottir ◽  
Viggo T. Marteinsson ◽  
Solveig K. Petursdottir ◽  
...  

ABSTRACT In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80�C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90�C, and a Chloroflexusmat is formed at 65 to 70�C. We have studied the microbial diversity of one sulfur mat (high-sulfide) hot spring and oneChloroflexus mat (low-sulfide) hot spring by cloning and sequencing of small-subunit rRNA genes obtained by PCR amplification from mat DNA. Using 98% sequence identity as a cutoff value, a total of 14 bacterial operational taxonomic units (OTUs) and 5 archaeal OTUs were detected in the sulfur mat; 18 bacterial OTUs were detected in theChloroflexus mat. Although representatives of novel divisions were found, the majority of the sequences were >95% related to currently known sequences. The molecular diversity analysis showed that Chloroflexus was the dominant mat organism in the low-sulfide spring (1 mg liter−1) below 70�C, whereasAquificales were dominant in the high-sulfide spring (12 mg liter−1) at the same temperature. Comparison of the present data to published data indicated that there is a relationship between mat type and composition of Aquificales on the one hand and temperature and sulfide concentration on the other hand.


1999 ◽  
Vol 65 (2) ◽  
pp. 837-840 ◽  
Author(s):  
Naoya Shinzato ◽  
Tadao Matsumoto ◽  
Ikuo Yamaoka ◽  
Tairo Oshima ◽  
Akihiko Yamagishi

ABSTRACT A phylogenetic analysis of the sequences of 60 clones of archaeal small-subunit rRNA genes amplified from the termiteReticulitermes speratus revealed that most of them (56 clones) clustered in the genus Methanobrevibacter. Three clones were classified in the order Thermoplasmales. TheMethanobrevibacter-related symbionts were detected by in situ hybridization analysis.


2008 ◽  
Vol 74 (19) ◽  
pp. 6026-6031 ◽  
Author(s):  
Joaqu�n Qu�lez ◽  
Eucaris Torres ◽  
Rachel M. Chalmers ◽  
Stephen J. Hadfield ◽  
Emilio del Cacho ◽  
...  

ABSTRACT To provide information on the transmission dynamics of cryptosporidial infections in domestic small ruminants and the potential role of sheep and goats as a source for human cryptosporidiosis, Cryptosporidium-positive isolates from 137 diarrheic lambs and 17 goat kids younger than 21 days of age were examined by using genotyping and subtyping techniques. Fecal specimens were collected between 2004 and 2006 from 71 sheep and 7 goat farms distributed throughout Arag�n (northeastern Spain). Cryptosporidium parvum was the only species identified by restriction analyses of PCR products from small-subunit rRNA genes from all 154 microscopy-positive isolates and the sequencing of a subset of 50 isolates. Sequence analyses of the glycoprotein (GP60) gene revealed extensive genetic diversity within the C. parvum strains in a limited geographical area, in which the isolates from lambs exhibited 11 subtypes in two subtype families (IId and IIa) and those from goat kids displayed four subtypes within the family IId. Most isolates (98%) belonged to the subtype family IId, whereas only three isolates belonged to the most widely distributed family, IIa. Three of the four most prevalent subtypes (IIdA17G1a, IIdA19G1, and IIdA18G1) were previously identified in humans, and five subtypes (IIdA14G1, IIdA15G1, IIdA24G1, IIdA25G1, and IIdA26G1) were novel subtypes. All IId subtypes were identical to each other in the nonrepeat region, except for subtypes IIdA17G1b and IIdA22G1, which differed by a single nucleotide polymorphism downstream of the trinucleotide repeats. These findings suggest that lambs and goat kids are an important reservoir of the zoonotic C. parvum subtype family IId for humans.


2001 ◽  
Vol 67 (8) ◽  
pp. 3557-3563 ◽  
Author(s):  
Achim Schmalenberger ◽  
Frank Schwieger ◽  
Christoph C. Tebbe

ABSTRACT Genetic profiling techniques of microbial communities based on PCR-amplified signature genes, such as denaturing gradient gel electrophoresis or single-strand-conformation polymorphism (SSCP) analysis, are normally done with PCR products of less than 500-bp. The most common target for diversity analysis, the small-subunit rRNA genes, however, are larger, and thus, only partial sequences can be analyzed. Here, we compared the results obtained by PCR targeting different variable (V) regions (V2 and V3, V4 and V5, and V6 to V8) of the bacterial 16S rRNA gene with primers hybridizing to evolutionarily conserved flanking regions. SSCP analysis of single-stranded PCR products generated from 13 different bacterial species showed fewer bands with products containing V4-V5 (average, 1.7 bands per organism) than with V2-V3 (2.2 bands) and V6-V8 (2.3 bands). We found that the additional bands (>1 per organism) were caused by intraspecies operon heterogeneities or by more than one conformation of the same sequence. Community profiles, generated by PCR-SSCP from bacterial-cell consortia extracted from rhizospheres of field-grown maize (Zea mays), were analyzed by cloning and sequencing of the dominant bands. A total of 48 sequences could be attributed to 34 different strains from 10 taxonomical groups. Independent of the primer pairs, we found proteobacteria (α, β, and γ subgroups) and members of the genus Paenibacillus (low G+C gram-positive) to be the dominant organisms. Other groups, however, were only detected with single primer pairs. This study gives an example of how much the selection of different variable regions combined with different specificities of the flanking “universal” primers can affect a PCR-based microbial community analysis.


2006 ◽  
Vol 72 (10) ◽  
pp. 6707-6715 ◽  
Author(s):  
Andrew B. Dalby ◽  
Daniel N. Frank ◽  
Allison L. St. Amand ◽  
Alison M. Bendele ◽  
Norman R. Pace

ABSTRACT Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for a variety of inflammatory conditions; however, the benefits of this class of drugs are accompanied by deleterious side effects, most commonly gastric irritation and ulceration. NSAID-induced ulceration is thought to be exacerbated by intestinal microbiota, but previous studies have not identified specific microbes that contribute to these adverse effects. In this study, we conducted a culture-independent analysis of ∼1,400 bacterial small-subunit rRNA genes associated with the small intestines and mesenteric lymph nodes of rats treated with the NSAID indomethacin. This is the first molecular analysis of the microbiota of the rat small intestine. A comparison of clone libraries and species-specific quantitative PCR results from rats treated with indomethacin and untreated rats revealed that organisms closely related to Enterococcus faecalis were heavily enriched in the small intestine and mesenteric lymph nodes of the treated rats. These data suggest that treatment of NSAID-induced ulceration may be facilitated by addressing the microbiological imbalances.


Sign in / Sign up

Export Citation Format

Share Document