scholarly journals Cooccurrence of Aerobic and Anaerobic Methane Oxidation in the Water Column of Lake Plußsee

2005 ◽  
Vol 71 (12) ◽  
pp. 8925-8928 ◽  
Author(s):  
Gundula Eller ◽  
Layla Känel ◽  
Martin Krüger

ABSTRACT Dissolved methane was investigated in the water column of eutrophic Lake Plußsee and compared to temperature, oxygen, and sulfide profiles. Methane concentrations and δ-13C signatures indicated a zone of aerobic methane oxidation and additionally a zone of anaerobic methane oxidation in the anoxic water body. The latter coincided with a peak in hydrogen sulfide concentration. High cell numbers of aerobic and anaerobic methane-oxidizing microorganisms were detected by fluorescence in situ hybridization (FISH) or the more sensitive catalyst-amplified reporter deposition-FISH, respectively, in these layers.

2012 ◽  
Vol 263-264 ◽  
pp. 210-219 ◽  
Author(s):  
C. Wrede ◽  
S. Brady ◽  
S. Rockstroh ◽  
A. Dreier ◽  
S. Kokoschka ◽  
...  

2009 ◽  
Vol 75 (11) ◽  
pp. 3656-3662 ◽  
Author(s):  
Katharina F. Ettwig ◽  
Theo van Alen ◽  
Katinka T. van de Pas-Schoonen ◽  
Mike S. M. Jetten ◽  
Marc Strous

ABSTRACT Anaerobic methane oxidation coupled to denitrification was recently assigned to bacteria belonging to the uncultured phylum NC10. In this study, we incubated sediment from a eutrophic ditch harboring a diverse community of NC10 bacteria in a bioreactor with a constant supply of methane and nitrite. After 6 months, fluorescence in situ hybridization showed that NC10 bacteria dominated the resulting population. The enrichment culture oxidized methane and reduced nitrite to dinitrogen gas. We assessed NC10 phylum diversity in the inoculum and the enrichment culture, compiled the sequences currently available for this bacterial phylum, and showed that of the initial diversity, only members of one subgroup had been enriched. The growth of this subgroup was monitored by quantitative PCR and correlated to nitrite-reducing activity and the total biomass of the culture. Together, the results indicate that the enriched subgroup of NC10 bacteria is responsible for anaerobic methane oxidation coupled to nitrite reduction. Due to methodological limitations (a strong bias against NC10 bacteria in 16S rRNA gene clone libraries and inhibition by commonly used stopper material) the environmental distribution and importance of these bacteria could be largely underestimated at present.


2021 ◽  
Vol 18 (10) ◽  
pp. 3087-3101
Author(s):  
Sigrid van Grinsven ◽  
Kirsten Oswald ◽  
Bernhard Wehrli ◽  
Corinne Jegge ◽  
Jakob Zopfi ◽  
...  

Abstract. Small boreal lakes are known to contribute significantly to global CH4 emissions. Lake Lovojärvi is a eutrophic lake in southern Finland with bottom water CH4 concentrations up to 2 mM. However, the surface water concentration, and thus the diffusive emission potential, was low (< 0.5 µM). We studied the biogeochemical processes involved in CH4 removal by chemical profiling and through incubation experiments. δ13C-CH4 profiling of the water column revealed a methane-oxidation hotspot just below the oxycline and zones of CH4 oxidation within the anoxic water column. In incubation experiments involving the addition of light and/or oxygen, CH4 oxidation rates in the anoxic hypolimnion were enhanced 3-fold, suggesting a major role for photosynthetically fueled aerobic CH4 oxidation. We observed a distinct peak in CH4 concentration at the chlorophyll-a maximum, caused by either in situ CH4 production or other CH4 inputs such as lateral transport from the littoral zone. In the dark anoxic water column at 7 m depth, nitrite seemed to be the key electron acceptor involved in CH4 oxidation, yet additions of Fe(III), anthraquinone-2,6-disulfonate and humic substances also stimulated anoxic CH4 oxidation. Surprisingly, nitrite seemed to inhibit CH4 oxidation at all other depths. Overall, this study shows that photosynthetically fueled CH4 oxidation can be a key process in CH4 removal in the water column of humic, turbid lakes, thereby limiting diffusive CH4 emissions from boreal lakes. Yet, it also highlights the potential importance of a whole suite of alternative electron acceptors, including humics, in these freshwater environments in the absence of light and oxygen.


Author(s):  
E Durisch-Kaiser ◽  
B Müller ◽  
F Lucas ◽  
C Schubert ◽  
T Diem

2020 ◽  
Author(s):  
Kyle S. Metcalfe ◽  
Ranjani Murali ◽  
Sean W. Mullin ◽  
Stephanie A. Connon ◽  
Victoria J. Orphan

Abstract Archaeal anaerobic methanotrophs (“ANME”) and sulfate-reducing Deltaproteobacteria (“SRB”) form symbiotic multicellular consortia capable of anaerobic methane oxidation (AOM), and in so doing modulate methane flux from marine sediments. The specificity with which ANME associate with particular SRB partners in situ, however, is poorly understood. To characterize partnership specificity in ANME-SRB consortia, we applied the correlation inference technique SparCC to 310 16S rRNA amplicon libraries prepared from Costa Rica seep sediment samples, uncovering a strong positive correlation between ANME-2b and members of a clade of Deltaproteobacteria we termed SEEP-SRB1g. We confirmed this association by examining 16S rRNA diversity in individual ANME-SRB consortia sorted using flow cytometry and by imaging ANME-SRB consortia with fluorescence in situ hybridization (FISH) microscopy using newly-designed probes targeting the SEEP-SRB1g clade. Analysis of genome bins belonging to SEEP-SRB1g revealed the presence of a complete nifHDK operon required for diazotrophy, unusual in published genomes of ANME-associated SRB. Active expression of nifH in SEEP-SRB1g within ANME-2b—SEEP-SRB1g consortia was then demonstrated by microscopy using hybridization chain reaction (HCR-) FISH targeting nifH transcripts and diazotrophic activity was documented by FISH-nanoSIMS experiments. NanoSIMS analysis of ANME-2b—SEEP-SRB1g consortia incubated with a headspace containing CH4 and 15N2 revealed differences in cellular 15N-enrichment between the two partners that varied between individual consortia, with SEEP-SRB1g cells enriched in 15N relative to ANME-2b in one consortium and the opposite pattern observed in others, indicating both ANME-2b and SEEP-SRB1g are capable of nitrogen fixation, but with consortium-specific variation in whether the archaea or bacterial partner is the dominant diazotroph.


2020 ◽  
Author(s):  
Kyle S. Metcalfe ◽  
Ranjani Murali ◽  
Sean W. Mullin ◽  
Stephanie A. Connon ◽  
Victoria J. Orphan

AbstractArchaeal anaerobic methanotrophs (‘ANME’) and sulfate-reducing Deltaproteobacteria (‘SRB’) form symbiotic multicellular consortia capable of anaerobic methane oxidation (AOM), and in so doing modulate methane flux from marine sediments. The specificity with which ANME associate with particular SRB partners in situ, however, is poorly understood. To characterize partnership specificity in ANME-SRB consortia, we applied the correlation inference technique SparCC to 310 16S rRNA Illumina iTag amplicon libraries prepared from Costa Rica sediment samples, uncovering a strong positive correlation between ANME-2b and members of a clade of Deltaproteobacteria we termed SEEP-SRB1g. We confirmed this association by examining 16S rRNA diversity in individual ANME-SRB consortia sorted using flow cytometry and by imaging ANME-SRB consortia with fluorescence in situ hybridization (FISH) microscopy using newly-designed probes targeting the SEEP-SRB1g clade. Analysis of genome bins belonging to SEEP-SRB1g revealed the presence of a complete nifHDK operon required for diazotrophy, unusual in published genomes of ANME-associated SRB. Active expression of nifH in SEEP-SRB1g and diazotrophic activity within ANME-2b/SEEP-SRB1g consortia was then demonstrated by microscopy using hybridization chain-reaction (HCR-) FISH targeting nifH transcripts and by FISH-nanoSIMS experiments. NanoSIMS analysis of ANME-2b/SEEP-SRB1g consortia incubated with a headspace containing CH4 and 15N2 revealed differences in cellular 15N-enrichment between the two partners that varied between individual consortia, with SEEP-SRB1g cells enriched in 15N relative to ANME-2b in one consortium and the opposite pattern observed in others, indicating both ANME-2b and SEEP-SRB1g are capable of nitrogen fixation, but with consortium-specific variation in whether the archaea or bacterial partner is the dominant diazotroph.


2016 ◽  
Author(s):  
Fleur A. E. Roland ◽  
François Darchambeau ◽  
Cédric Morana ◽  
Sean A. Crowe ◽  
Bo Thamdrup ◽  
...  

Abstract. This study investigates methane (CH4) oxidation in the water column of Lake Kivu, a deep meromictic tropical lake containing large quantities of CH4 in the anoxic deep waters. Depth profiles of dissolved gases (CH4 and nitrous oxide (N2O)) and of the different potential electron acceptors for anaerobic methane oxidation (AOM) (nitrate, sulfate, iron and manganese) were determined during six field campaigns between June 2011 and August 2014. Bacterial abundance all along the vertical profiles was also determined by flow cytometry during three field campaigns, and denitrification measurements based on stable isotopes were performed twice. Incubation experiments were performed to quantify CH4 oxidation and nitrate consumption rates, with a focus on AOM, without and with an inhibitor of sulfate-reducing bacteria activity (molybdate). Nitrate consumption rates were measured in these incubations. Substantial CH4 oxidation activity was observed in oxic and anoxic waters, and in the upper anoxic waters of Lake Kivu, CH4 is a major electron donor to sustain anaerobic metabolic processes coupled to AOM. The maximum aerobic and anaerobic CH4 oxidation rates were estimated to 27 ± 2 and 16 ± 8 µmol L−1 d−1, respectively. We observed a decrease of AOM rates when molybdate was added for half of the measurements, strongly suggesting the occurrence of AOM linked to sulfate reduction, but an increase of AOM rates was observed for the other half. Nitrate reduction rates and dissolved manganese production rates tended to be higher with the addition of molybdate, but the maximum rates of 0.6 ± 0.02 and 11 ± 2 µmol L−1 d−1, respectively, were never high enough to explain AOM rates observed at the same depths. We also put in evidence a difference in relative importance of aerobic and anaerobic CH4 oxidation between the seasons, with a higher importance of aerobic oxidation when the oxygenated layer was thicker (in dry season).


2010 ◽  
Vol 57 (21-23) ◽  
pp. 2022-2029 ◽  
Author(s):  
Scott D. Wankel ◽  
Samantha B. Joye ◽  
Vladimir A. Samarkin ◽  
Sunita R. Shah ◽  
Gernot Friederich ◽  
...  

2008 ◽  
Vol 295 (5) ◽  
pp. R1479-R1485 ◽  
Author(s):  
Julie Furne ◽  
Aalia Saeed ◽  
Michael D. Levitt

Hydrogen sulfide is gaining acceptance as an endogenously produced modulator of tissue function. The present paradigm of H2S (diprotonated, gaseous form of hydrogen sulfide) as a tissue messenger consists of H2S being released from the desulfhydration of l-cysteine at a rate sufficient to maintain whole tissue hydrogen sulfide concentrations of 30 μM to >100 μM, and these tissue concentrations serve a messenger function. Utilizing physiological concentrations of l-cysteine and aerobic conditions, we found that catabolism of hydrogen sulfide by mouse liver and brain homogenates exceeded the rate of enzymatic release of this compound such that measureable hydrogen sulfide release was less with tissue-containing vs. tissue-free buffers. Analyses of the gas space over rapidly homogenized mouse brain and liver indicated that in situ tissue hydrogen sulfide concentrations were only about 15 nM. Human alveolar air measurements indicated negligible free H2S concentrations in blood. We conclude rapid tissue catabolism of hydrogen sulfide maintains whole tissue brain and liver concentrations of free hydrogen sulfide that are three orders of magnitude less than conventionally accepted values and only 1/5,000 of the hydrogen sulfide concentration (100 μM) required to alter cellular function in vitro. For hydrogen sulfide to serve as an endogenously produced messenger, tissue production and catabolism must result in intracellular microenvironments with a sufficiently high hydrogen sulfide concentration to activate a local signaling mechanism, while whole tissue concentrations remain very low.


Sign in / Sign up

Export Citation Format

Share Document