scholarly journals Horizontal Gene Transfer of PIB-Type ATPases among Bacteria Isolated from Radionuclide- and Metal-Contaminated Subsurface Soils

2006 ◽  
Vol 72 (5) ◽  
pp. 3111-3118 ◽  
Author(s):  
Robert J. Martinez ◽  
Yanling Wang ◽  
Melanie A. Raimondo ◽  
Jonna M. Coombs ◽  
Tamar Barkay ◽  
...  

ABSTRACT Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with cooccurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pbr) isolates was amplified with PCR primers specific for PIB-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired PIB-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pbr PIB-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO2 2+) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of PIB-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC.

2021 ◽  
Vol 12 ◽  
Author(s):  
Chien-Jui Huang ◽  
Ting-Li Wu ◽  
Po-Xing Zheng ◽  
Jheng-Yang Ou ◽  
Hui-Fang Ni ◽  
...  

Background: Worldwide citrus production is severely threatened by Asiatic citrus canker which is caused by the proteobacterium Xanthomonas citri subsp. citri. Foliar sprays of copper-based bactericides are frequently used to control plant bacterial diseases. Despite the sequencing of many X. citri strains, the genome diversity and distribution of genes responsible for metal resistance in X. citri subsp. citri strains from orchards with different management practices in Taiwan are not well understood.Results: The genomes of three X. citri subsp. citri strains including one copper-resistant strain collected from farms with different management regimes in Taiwan were sequenced by Illumina and Nanopore sequencing and assembled into complete circular chromosomes and plasmids. CRISPR spoligotyping and phylogenomic analysis indicated that the three strains were located in the same phylogenetic lineages and shared ∼3,000 core-genes with published X. citri subsp. citri strains. These strains differed mainly in the CRISPR repeats and pathogenicity-related plasmid-borne transcription activator-like effector (TALE)-encoding pthA genes. The copper-resistant strain has a unique, large copper resistance plasmid due to an unusual ∼40 kbp inverted repeat. Each repeat contains a complete set of the gene cluster responsible for copper and heavy metal resistance. Conversely, the copper sensitive strains carry no metal resistance genes in the plasmid. Through comparative analysis, the origin and evolution of the metal resistance clusters was resolved.Conclusion: Chromosomes remained constant among three strains collected in Taiwan, but plasmids likely played an important role in maintaining pathogenicity and developing bacterial fitness in the field. The evolution of pathogenicity factors and horizontal gene transfer events were observed in the three strains. These data suggest that agricultural management practices could be a potential trigger for the evolution of citrus canker pathogens. The decrease in the number of CRISPR repeats and pthA genes might be the result of adaptation to a less stressful environment. The metal resistance genes in the copper resistant X. citri strain likely originated from the Mauritian strain not the local copper-resistant X. euvesicatoria strain. This study highlights the importance of plasmids as ‘vehicles’ for exchanging genetic elements between plant pathogenic bacteria and contributing to bacterial adaptation to the environment.


2019 ◽  
Author(s):  
Daniela Sánchez-Soto ◽  
Guillermin Agüero-Chapin ◽  
Vinicio Armijos-Jaramillo ◽  
Yunierkis Perez-Castillo ◽  
Eduardo Tejera ◽  
...  

AbstractHorizontal gene transfer (HGT) plays an important role in the evolution of many organisms, especially in prokaryotes where commonly occurs. Microbial communities can improve survival due to the evolutionary innovations induced by HGT events. Thus, several computational approaches have arisen to identify such events in recipient genomes. However, this has been proven to be a complex task due to the generation of a great number of false positives and the prediction disagreement among the existing methods. Phylogenetic reconstruction methods turned out to be the most reliable but they are not extensible to all genes/species and are computationally demanding when dealing with large datasets. On the other hand, the so-called surrogate methods that use heuristic solutions either based on nucleotide composition patterns or phyletic distribution of BLAST hits can be applied easily to genomic scale, however, they fail in identifying common HGT events. Here, we present ShadowCaster, a hybrid approach that sequentially combines compositional features under the shadow of phylogenetic models independent of tree reconstruction to improve the detection of HTG events in prokaryotes. ShadowCaster predicted successfully close and distant HTG events in both artificial and bacterial genomes. It detected HGT related to heavy metal resistance in the genome of Rhodanobacter denitrificans with higher accuracy than the most popular state-of-the-art computational approaches. ShadowCaster’s predictions showed the highest agreement among those obtained with other assayed methods. ShadowCaster is released as an open-source software under the GPLv3 license. Source code is hosted at https://github.com/dani2s/ShadowCaster and documentation at https://shadowcaster.readthedocs.io/en/latest/.


2017 ◽  
Author(s):  
Ankita Kothari ◽  
Yu-Wei Wu ◽  
Marimikel Charrier ◽  
Lara Rajeev ◽  
Andrea M. Rocha ◽  
...  

AbstractNative plasmids constitute a major category of extrachromosomal DNA elements responsible for harboring and transferring genes important in survival and fitness. A focused evaluation of plasmidomes can reveal unique adaptations required by microbial communities. We examined the plasmid DNA from two pristine wells at the Oak Ridge Field Research Center. Using a cultivation-free method that targets plasmid DNA, a total of 42,440 and 32,232 (including 67 and 548 complete circular units) scaffolds > 2 kb were obtained from the two wells. The taxonomic distribution of bacteria in the two wells showed greater similarity based on their plasmidome sequence, relative to 16S rRNA sequence comparison. This similarity is also evident in the plasmid encoded functional genes. Among functionally annotated genes, candidates providing resistance to copper, zinc, cadmium, arsenic, and mercury were particularly abundant and common to the plasmidome of both wells. The primary function encoded by the most abundant circularized plasmid, common to both wells, was mercury resistance, even though the current ground water does not contain detectable levels of mercury. This study reveals that the plasmidome can have a unique ecological role in maintaining the latent capacity of a microbiome enabling rapid adaptation to environmental stresses.


Author(s):  
Cornelia Große ◽  
Thomas A. Kohl ◽  
Stefan Niemann ◽  
Martin Herzberg ◽  
Dietrich H. Nies

The genome of the metal resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (Δ cadA ΔzntA ΔdmeF ΔfieF ) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic re-resequencing of strains CH34, AE104, Δe4 and others revealed that the genomic islands CMGIs 2, 3, 4, D, E, but no other islands or recessive determinants, were deleted in some of these strains. Provided CH34 wild type was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as previously surmised, simply absent from the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. Analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and up-regulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and the same time ensures metal homeostasis. Significance In their natural environment, bacteria continually acquire genes by horizontal gene transfer and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes, but instead may lose them. This was indeed observed in Cupriavidus metallidurans for loss key metal-resistance determinants when no selection pressure was continuously kept. However, some recessive metal-resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may only remain in the genome because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.


2021 ◽  
Vol 203 (10) ◽  
Author(s):  
Kathleen P. Davis ◽  
Alan D. Grossman

ABSTRACT Integrative and conjugative elements (ICEs) are mobile genetic elements capable of transferring their own and other DNA. They contribute to the spread of antibiotic resistance and other important traits for bacterial evolution. Exclusion is a mechanism used by many conjugative plasmids and a few ICEs to prevent their host cell from acquiring a second copy of the cognate element. ICEBs1 of Bacillus subtilis has an exclusion mechanism whereby the exclusion protein YddJ in a potential recipient inhibits the activity of the ICEBs1-encoded conjugation machinery in a potential donor. The target of YddJ-mediated exclusion is the conjugation protein ConG (a VirB6 homolog). Here, we defined the regions of YddJ and ConG that confer exclusion specificity and determined the importance of exclusion to host cells. Using chimeras that had parts of ConG from ICEBs1 and the closely related ICEBat1, we identified a putative extracellular loop of ConG that conferred specificity for exclusion by the cognate YddJ. Using chimeras of YddJ from ICEBs1 and ICEBat1, we identified two regions in YddJ needed for exclusion specificity. We also found that YddJ-mediated exclusion reduced the death of donor cells following conjugation into recipients. Donor death was dependent on the ability of transconjugants to themselves become donors and was reduced under osmoprotective conditions, indicating that death was likely due to alterations in the donor cell envelope caused by excessive conjugation. We postulate that elements that can have high frequencies of transfer likely evolved exclusion mechanisms to protect the host cells from excessive death. IMPORTANCE Horizontal gene transfer is a driving force in bacterial evolution, responsible for the spread of many traits, including antibiotic and heavy metal resistance. Conjugation, one type of horizontal gene transfer, involves DNA transfer from donor to recipient cells through conjugation machinery and direct cell-cell contact. Exclusion mechanisms allow conjugative elements to prevent their host from acquiring additional copies of the element and are highly specific, enabling hosts to acquire heterologous elements. We defined regions of the exclusion protein and its target in the conjugation machinery that convey high specificity of exclusion. We found that exclusion protects donors from cell death during periods of high transfer. This is likely important for the element to enter new populations of cells.


Sign in / Sign up

Export Citation Format

Share Document