metal resistance
Recently Published Documents


TOTAL DOCUMENTS

761
(FIVE YEARS 286)

H-INDEX

63
(FIVE YEARS 10)

2022 ◽  
Vol 425 ◽  
pp. 128006
Author(s):  
Caide Huang ◽  
Xiaoling Zhang ◽  
Kun Wang ◽  
Shizhong Yue ◽  
Yuhui Qiao

2022 ◽  
Author(s):  
Irina Bukharina ◽  
Nadezhda Islamova

The aim of this research was to study the effect of inoculation with the Cylindrocarpon magnusianum endotrophic micromycete on the physiological and biochemical parameters of tomato test plants under the action of heavy metal salts. The plants were inoculated with the fungus culture (control population) and populations of this fungus preliminarily adapted to the action of the stress factor. Then, inoculated plants were grown under control conditions and on substrates with different concentrations of heavy metal salts (zinc, copper, lead and chromium). After the plants were inoculated with the control population of the C. magnusianum fungus, a stimulating effect increasing the plants’ resistance to the action of the heavy metal salts was not detected. When the plants were inoculated with adapted populations of the C. magnusianum fungus, adaptive reactions of the plants associated with the content of photosynthetic pigments in the leaves and the formation of plant biomass were significantly manifested. Under these conditions, a more intense development of fungal infection in plant roots was observed in contrast to the use of the control fungal population. These findings therefore demonstrated an effective partnership between the C. magnusianum fungus and the root system of plants under extreme conditions for plant life. Keywords: Cylindrocarpon magnusianum, micromycetes, heavy metals, inoculation, biochemical indicators


2022 ◽  
Vol 12 ◽  
Author(s):  
Yi Chen ◽  
Tobin Simonetti ◽  
Kari Peter ◽  
Qing Jin ◽  
Eric Brown ◽  
...  

Whole genome analysis was performed on 501 isolates obtained from a previous survey which recovered 139 positive environmental sponge samples (i.e., up to 4 isolates per sample) from a total of 719 samples collected at 40 standardized sites in 3 commercial apple packinghouse facilities (i.e., P1, P2, and P3) over 3 successive seasons in a single production year. After excluding duplicated isolates, the data from 156 isolates revealed the clonal diversity of L. monocytogenes and allowed the detection of transient contamination, persistent contamination, and cross-area transmission events. Facility P2 with the poorest sanitary conditions had the least diversity (Shannon’s index of 0.38). P2 contained a Clonal Complex (CC) 554, serogroup IVb-v1 strain that persisted throughout the year and spread across the entire facility, a singleton Sequence Type (ST) 1003, lineage III strain that persisted through two seasons and spread across two areas of the facility, and 3 other clones from transient contaminations. P1 and P3, facilities with better sanitary conditions, had much higher diversity (i.e., 15 clones with a Shannon’s index of 2.49 and 10 clones with a Shannon’s index of 2.10, respectively) that were the result of transient contamination. Facilities P1 and P3 had the highest incidence (43.1%) of lineage III isolates, followed by lineage I (31.3%) and lineage II (25.5%) isolates. Only 1 isolate in the three facilities contained a premature stop codon in virulence gene inlA. Fourteen samples yielded 2–3 clones per sample, demonstrating the importance of choosing appropriate methodologies and selecting a sufficient number of isolates per sample for studying L. monocytogenes diversity. Only 1 isolate, belonging to CC5 and from facility P3, contained a known plasmid, and this was also the only isolate containing benzalkonium chloride tolerance genes. The persistent CC554 strain did not exhibit stronger sanitizer resistance than other isolates and did not contain any confirmed molecular determinants of L. monocytogenes stress resistance that were differentially present in other isolates, such as genes involved in sanitizer tolerance, heavy metal resistance, biofilm-forming, stress survival islet 1 (SSI-1), stress survival islet 2 (SSI-2) or Listeria genomic island (LGI2).


2022 ◽  
Author(s):  
Madhuri Girdhar ◽  
Zeba Tabassum ◽  
Kopal Singh ◽  
Anand Mohan

Heavy metals accumulated the earth crust and causes extreme pollution. Accumulation of rich concentrations of heavy metals in environments can cause various human diseases which risks health and high ecological issues. Mercury, arsenic, lead, silver, cadmium, chromium, etc. are some heavy metals harmful to organisms at even very low concentration. Heavy metal pollution is increasing day by day due to industrialization, urbanization, mining, volcanic eruptions, weathering of rocks, etc. Different microbial strains have developed very efficient and unique mechanisms for tolerating heavy metals in polluted sites with eco-friendly techniques. Heavy metals are group of metals with density more than 5 g/cm3. Microorganisms are generally present in contaminated sites of heavy metals and they develop new strategies which are metabolism dependent or independent to tackle with the adverse effects of heavy metals. Bacteria, Algae, Fungi, Cyanobacteria uses in bioremediation technique and acts a biosorbent. Removal of heavy metal from contaminated sites using microbial strains is cheaper alternative. Mostly species involved in bioremediation include Enterobacter and Pseudomonas species and some of bacillus species too in bacteria. Aspergillus and Penicillin species used in heavy metal resistance in fungi. Various species of the brown algae and Cyanobacteria shows resistance in algae.


2022 ◽  
Vol 158 ◽  
pp. 106899
Author(s):  
Xuanji Li ◽  
Christopher Rensing ◽  
Gisle Vestergaard ◽  
Manimozhiyan Arumugam ◽  
Joseph Nesme ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 214
Author(s):  
Daria Chlebek ◽  
Tomasz Płociniczak ◽  
Sara Gobetti ◽  
Agata Kumor ◽  
Katarzyna Hupert-Kocurek ◽  
...  

The Pseudomonas qingdaonensis ZCR6 strain, isolated from the rhizosphere of Zea mays growing in soil co-contaminated with hydrocarbons and heavy metals, was investigated for its plant growth promotion, hydrocarbon degradation, and heavy metal resistance. In vitro bioassays confirmed all of the abovementioned properties. ZCR6 was able to produce indole acetic acid (IAA), siderophores, and ammonia, solubilized Ca3(PO4)2, and showed surface active properties and activity of cellulase and very high activity of 1-aminocyclopropane-1-carboxylic acid deaminase (297 nmol α-ketobutyrate mg−1 h−1). The strain degraded petroleum hydrocarbons (76.52% of the initial hydrocarbon content was degraded) and was resistant to Cd, Zn, and Cu (minimal inhibitory concentrations reached 5, 15, and 10 mM metal, respectively). The genome of the ZCR6 strain consisted of 5,507,067 bp, and a total of 5055 genes were annotated, of which 4943 were protein-coding sequences. Annotation revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis and uptake, synthesis of IAA, ethylene modulation, heavy metal resistance, exopolysaccharide biosynthesis, and organic compound degradation. Complete characteristics of the ZCR6 strain showed its potential multiway properties for enhancing the phytoremediation of co-contaminated soils. To our knowledge, this is the first analysis of the biotechnological potential of the species P. qingdaonensis.


2021 ◽  
Vol 8 (1) ◽  
pp. 145-149
Author(s):  
Tia Setiawan ◽  
Zenal Abidin ◽  
Cucu Hendra

Corrosion is an electrochemical reaction process that is natural and takes place by itself, corrosion cannot be prevented or stopped but can only be controlled using the Electro Plating method. Electroplating is a process that produces a thin layer of metal on top of another metal surface by electrolysis or electroplating using direct current (DC) and chemical solutions (electrolytes). The process of giving this protective layer aims to protect the metal from corrosion, in this study, will make a prototype electro plating tool for small industry or Home Industry, the completeness of the components needed to make a prototype electro plating tool is an AC transformer matic 30-50 A 12V, ampere meter, volt meter, fuse and switch, then nickel solution serves to provide strength, metal resistance from rust and chrome solution serves to provide resistance to corrosion and gives a glossy white color so it looks better, to produce a strong coating. With the occurrence of the anode, cathode, and electrolyte solution which are used entirely as related to coating materials, especially metals are illustrated as, the cathode can be interpreted as the workpiece to be coated, connected to the negative pole of the electric current source and the electrolyte in the form of a solution whose molecules can be dissolved. in water and decomposes into positively or negatively charged particles and the deposition in the process is due to the presence of ions in the electrolyte and will settle on the cathode and the process of coating the metal occursPlease write your abstract in English version here.


Author(s):  
Cornelia Große ◽  
Thomas A. Kohl ◽  
Stefan Niemann ◽  
Martin Herzberg ◽  
Dietrich H. Nies

The genome of the metal resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (Δ cadA ΔzntA ΔdmeF ΔfieF ) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic re-resequencing of strains CH34, AE104, Δe4 and others revealed that the genomic islands CMGIs 2, 3, 4, D, E, but no other islands or recessive determinants, were deleted in some of these strains. Provided CH34 wild type was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as previously surmised, simply absent from the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. Analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and up-regulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and the same time ensures metal homeostasis. Significance In their natural environment, bacteria continually acquire genes by horizontal gene transfer and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes, but instead may lose them. This was indeed observed in Cupriavidus metallidurans for loss key metal-resistance determinants when no selection pressure was continuously kept. However, some recessive metal-resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may only remain in the genome because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.


Sign in / Sign up

Export Citation Format

Share Document