scholarly journals Detection of Anthrax Toxin in the Serum of Animals Infected with Bacillus anthracis by Using Engineered Immunoassays

2006 ◽  
Vol 13 (6) ◽  
pp. 671-677 ◽  
Author(s):  
Robert Mabry ◽  
Kathleen Brasky ◽  
Robert Geiger ◽  
Ricardo Carrion ◽  
Gene B. Hubbard ◽  
...  

ABSTRACT Several strategies that target anthrax toxin are being developed as therapies for infection by Bacillus anthracis. Although the action of the tripartite anthrax toxin has been extensively studied in vitro, relatively little is known about the presence of toxins during an infection in vivo. We developed a series of sensitive sandwich enzyme-linked immunosorbent assays (ELISAs) for detection of both the protective antigen (PA) and lethal factor (LF) components of the anthrax exotoxin in serum. The assays utilize as capture agents an engineered high-affinity antibody to PA, a soluble form of the extracellular domain of the anthrax toxin receptor (ANTXR2/CMG2), or PA itself. Sandwich immunoassays were used to detect and quantify PA and LF in animals infected with the Ames or Vollum strains of anthrax spores. PA and LF were detected before and after signs of toxemia were observed, with increasing levels reported in the late stages of the infection. These results represent the detection of free PA and LF by ELISA in the systemic circulation of two animal models exposed to either of the two fully virulent strains of anthrax. Simple anthrax toxin detection ELISAs could prove useful in the evaluation of potential therapies and possibly as a clinical diagnostic to complement other strategies for the rapid identification of B. anthracis infection.

2004 ◽  
Vol 72 (11) ◽  
pp. 6313-6317 ◽  
Author(s):  
Fabien Brossier ◽  
Martine Lévy ◽  
Annie Landier ◽  
Pierre Lafaye ◽  
Michèle Mock

ABSTRACT Protective antigen (PA) is central to the action of the lethal and edema toxins produced by Bacillus anthracis. It is the common cell-binding component, mediating the translocation of the enzymatic moieties (lethal factor [LF] and edema factor) into the cytoplasm of the host cell. Monoclonal antibodies (MAbs) against PA, able to neutralize the activities of the toxins in vitro and in vivo, were screened. Two such MAbs, named 7.5 and 48.3, were purified and further characterized. MAb 7.5 binds to domain 4 of PA and prevents the binding of PA to its cell receptor. MAb 48.3 binds to domain 2 and blocks the cleavage of PA into PA63, a step necessary for the subsequent interaction with the enzymatic moieties. The epitope recognized by this antibody is in a region involved in the oligomerization of PA63; thus, MAb 48.3 does not recognize the oligomer form. MAbs 7.5 and 48.3 neutralize the activities of anthrax toxins produced by B. anthracis in mice. Also, there is an additive effect between the two MAbs against PA and a MAb against LF, in protecting mice against a lethal challenge by the Sterne strain. This work contributes to the functional analysis of PA and offers immunotherapeutic perspectives for the treatment of anthrax disease.


2008 ◽  
Vol 77 (2) ◽  
pp. 749-755 ◽  
Author(s):  
J. W. Ezzell ◽  
T. G. Abshire ◽  
R. Panchal ◽  
D. Chabot ◽  
S. Bavari ◽  
...  

ABSTRACT Bacillus anthracis lethal toxin (LT) was characterized in plasma from infected African Green monkeys, rabbits, and guinea pigs. In all cases, during the terminal phase of infection only the protease-activated 63-kDa form of protective antigen (PA63) and the residual 20-kDa fragment (PA20) were detected in the plasma. No uncut PA with a molecular mass of 83 kDa was detected in plasma from toxemic animals during the terminal stage of infection. PA63 was largely associated with lethal factor (LF), forming LT. Characterization of LT by Western blotting, capture enzyme-linked immunosorbent assay, and size exclusion chromatography revealed that the antiphagocytic poly-γ-d-glutamic acid (γ-DPGA) capsule released from B. anthracis bacilli was associated with LT in animal blood in variable amounts. While the nature of this in vivo association is not understood, we were able to determine that a portion of these LT/γ-DPGA complexes retained LF protease activity. Our findings suggest that the in vivo LT complexes differ from in vitro-produced LT and that including γ-DPGA when examining the effects of LT on specific immune cells in vitro may reveal novel and important roles for γ-DPGA in anthrax pathogenesis.


1998 ◽  
Vol 66 (2) ◽  
pp. 615-619 ◽  
Author(s):  
Jimmy D. Ballard ◽  
Amy M. Doling ◽  
Kathryn Beauregard ◽  
R. John Collier ◽  
Michael N. Starnbach

ABSTRACT We reported earlier that a nontoxic form of anthrax toxin was capable of delivering a cytotoxic T-lymphocyte (CTL) epitope in vivo, such that a specific CTL response was primed against the epitope. The epitope, of bacterial origin, was fused to an N-terminal fragment (LFn) from the lethal-factor component of the toxin, and the fusion protein was injected, together with the protective antigen (PA) component, into BALB/c mice. Here we report that PA plus LFn is capable of delivering a different epitope—OVA257–264 from ovalbumin. Delivery was accomplished in a different mouse haplotype,H-2Kb and occurred in vitro as well as in vivo. An OVA257–264-specific CTL clone, GA-4, recognized EL-4 cells treated in vitro with PA plus as little as 30 fmol of the LFn-OVA257–264 fusion protein. PA mutants attenuated in toxin self-assembly or translocation were inactive, implying that the role of PA in epitope delivery is the same as that in toxin action. Also, we showed that OVA257–264-specific CTL could be induced to proliferate by incubation with splenocytes treated with PA plus LFn-OVA257–264. These findings imply that PA-LFn may serve as a general delivery vehicle for CTL epitopes in vivo and as a safe, efficient tool for the ex vivo expansion of patient-derived CTL for use in adoptive immunotherapy.


2000 ◽  
Vol 68 (10) ◽  
pp. 5731-5734 ◽  
Author(s):  
Fabien Brossier ◽  
Martine Weber-Levy ◽  
Michèle Mock ◽  
Jean-Claude Sirard

ABSTRACT Bacillus anthracis secretes a lethal toxin composed of two proteins, the lethal factor (LF) and the protective antigen (PA), which interact within the host or in vitro at the surfaces of eukaryotic cells. Immunization with attenuated B. anthracisstrains induces an antibody response against PA and LF. The LF-specific response is potentiated by the binding of LF to PA. In this study, we investigated the capacity of PA to increase the antibody response against a foreign antigen. We constructed a chimeric gene encoding the PA-binding part of LF (LF254) fused to the C fragment of tetanus toxin (ToxC). The construct was introduced by allelic exchange into the locus encoding LF. Two recombinant B. anthracis strains secreting the hybrid protein LF254-ToxC were generated, one in a PA-producing background and the other in a PA-deficient background. Mice were immunized with spores of the strains, and the humoral response and protection against tetanus toxin were assessed. The B. anthracis strain producing both PA and LF254-ToxC induced significantly higher antibody titers and provided better protection against a lethal challenge with tetanus toxin than did its PA-deficient counterpart. Thus, PA is able to potentiate protective immunity against a heterologous antigen, demonstrating the potential of B. anthracis recombinant strains for use as live vaccine vehicles.


2007 ◽  
Vol 75 (4) ◽  
pp. 1895-1903 ◽  
Author(s):  
Jeffrey Tessier ◽  
Candace Green ◽  
Diana Padgett ◽  
Wei Zhao ◽  
Lawrence Schwartz ◽  
...  

ABSTRACT Bacillus anthracis edema toxin (ET), composed of protective antigen and an adenylate cyclase edema factor (EF), elicits edema in host tissues, but the target cells and events leading from EF-mediated cyclic-AMP production to edema are unknown. We evaluated the direct effect of ET on several cell types in vitro and tested the possibility that mediators of vascular leakage, such as histamine, contribute to edema in rabbits given intradermal ET. ET increased the transendothelial electrical resistance of endothelial monolayers, a response that is mechanistically inconsistent with the in vivo vascular leakage induced by ET. Screening of several drugs by intradermal treatment prior to toxin injection demonstrated reduced ET-induced vascular leakage with a cyclo-oxygenase inhibitor (indomethacin), agents that interfere with histamine (pyrilamine or cromolyn), or a neurokinin antagonist (spantide). Systemic administration of indomethacin or celecoxib (cyclo-oxygenase inhibitors), pyrilamine, aprepitant (a neurokinin 1 receptor antagonist), or indomethacin with pyrilamine significantly reduced vascular leakage associated with ET. Although the effects of pyrilamine, cromolyn, or aprepitant on ET-induced vascular leakage suggest a possible role for mast cells (MC) and sensory neurons in ET-induced edema, ET did not elicit degranulation of human skin MC or substance P release from NT2N cells in vitro. Our results indicate that ET, acting indirectly or directly on a target yet to be identified, stimulates the production/release of multiple inflammatory mediators, specifically neurokinins, prostanoids, and histamine. These mediators, individually and through complex interactions, increase vascular permeability, and interventions directed at these mediators may benefit hosts infected with B. anthracis.


2006 ◽  
Vol 51 (1) ◽  
pp. 245-251 ◽  
Author(s):  
Marina V. Backer ◽  
Vimal Patel ◽  
Brian T. Jehning ◽  
Kevin P. Claffey ◽  
Vladimir A. Karginov ◽  
...  

ABSTRACT In the course of Bacillus anthracis infection, B. anthracis lethal factor (LF) and edema factor bind to a protective antigen (PA) associated with cellular receptors ANTXR1 (TEM8) or ANTXR2 (CMG2), followed by internalization of the complex via receptor-mediated endocytosis. A new group of potential antianthrax drugs, β-cyclodextrins, has recently been described. A member of this group, per-6-(3-aminopropylthio)-β-cyclodextrin (AmPrβCD), was shown to inhibit the toxicity of LF in vitro and in vivo. In order to determine which steps in lethal factor trafficking are inhibited by AmPrβCD, we developed two targeted fluorescent tracers based on LFn, a catalytically inactive fragment of LF: (i) LFn site specifically labeled with the fluorescent dye AlexaFluor-594 (LFn-Al), and (ii) LFn-decorated liposomes loaded with the fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonic acid (LFn-Lip). Both tracers retained high affinity to PA/ANTXR complexes and were readily internalized via receptor-mediated endocytosis. Using fluorescent microscopy, we found that AmPrβCD inhibits receptor-mediated cell uptake but not the binding of LFn-Al to PA/ANTXR complexes, suggesting that AmPrβCD works outside the cell. Moreover, AmPrβCD and LFn-Al synergistically protect RAW 264.7 cells from PA-mediated LF toxicity, confirming that AmPrβCD did not affect the binding of LFn-Al to receptor-associated PA. In contrast, AmPrβCD did not inhibit PA-mediated internalization of LFn-Lip, suggesting that multiplexing of LFn on the liposomal surface overcomes the inhibiting effects of AmPrβCD. Notably, internalized LFn-Al and LFn-Lip protected cells that overexpressed anthrax receptor TEM8 from PA-induced, LF-independent toxicity, suggesting an independent mechanism for PA inhibition inside the cell. These data suggest the potential for the use of β-cyclodextrins in combination with LFn-Lip loaded with antianthrax drugs against intracellular targets.


2011 ◽  
Vol 79 (11) ◽  
pp. 4609-4616 ◽  
Author(s):  
Clinton E. Leysath ◽  
Kuang-Hua Chen ◽  
Mahtab Moayeri ◽  
Devorah Crown ◽  
Rasem Fattah ◽  
...  

ABSTRACTBacillus anthracisis the causative agent of anthrax, and the tripartite anthrax toxin is an essential element of its pathogenesis. Edema factor (EF), a potent adenylyl cyclase, is one of the toxin components. In this work, anti-EF monoclonal antibodies (MAb) were produced following immunization of mice, and four of the antibodies were fully characterized. MAb 3F2 has an affinity of 388 pM, was most effective for EF detection, and appears to be the first antibody reported to neutralize EF by binding to the catalytic CBdomain. MAb 7F10 shows potent neutralization of edema toxin activityin vitroandin vivo; it targets the N-terminal protective antigen binding domain. The four MAb react with three different domains of edema factor, and all were able to detect purified edema factor in Western blot analysis. None of the four MAb cross-reacted with the lethal factor toxin component. Three of the four MAb protected mice in both a systemic edema toxin challenge model and a subcutaneous spore-induced foreleg edema model. A combination of three of the MAb also significantly delayed the time to death in a third subcutaneous spore challenge model. This appears to be the first direct evidence that monoclonal antibody-mediated neutralization of EF alone is sufficient to delay anthrax disease progression.


1999 ◽  
Vol 67 (7) ◽  
pp. 3290-3296 ◽  
Author(s):  
Amy M. Doling ◽  
Jimmy D. Ballard ◽  
Hao Shen ◽  
Kaja Murali Krishna ◽  
Rafi Ahmed ◽  
...  

ABSTRACT We have investigated the use of the protective antigen (PA) and lethal factor (LF) components of anthrax toxin as a system for in vivo delivery of cytotoxic T-lymphocyte (CTL) epitopes. During intoxication, PA directs the translocation of LF into the cytoplasm of mammalian cells. Here we demonstrate that antiviral immunity can be induced in BALB/c mice immunized with PA plus a fusion protein containing the N-terminal 255 amino acids of LF (LFn) and an epitope from the nucleoprotein (NP) of lymphocytic choriomeningitis virus. We also demonstrate that BALB/c mice immunized with a single LFn fusion protein containing NP and listeriolysin O protein epitopes in tandem mount a CTL response against both pathogens. Furthermore, we show that NP-specific CTL are primed in both BALB/c and C57BL/6 mice when the mice are immunized with a single fusion containing two epitopes, one presented by Ld and one presented by Db. The data presented here demonstrate the versatility of the anthrax toxin delivery system and indicate that this system may be used as a general approach to vaccinate outbred populations against a variety of pathogens.


2007 ◽  
Vol 75 (11) ◽  
pp. 5175-5184 ◽  
Author(s):  
Mahtab Moayeri ◽  
Jason F. Wiggins ◽  
Stephen H. Leppla

ABSTRACT Bacillus anthracis protective antigen (PA) is an 83-kDa (PA83) protein that is cleaved to the 63-kDa protein (PA63) as an essential step in binding and internalizing lethal factor (LF). To assess in vivo receptor saturating PA concentrations, we injected mice with PA variants and measured the PA remaining in the blood at various times using PA83- and PA63-specific enzyme-linked immunosorbent assays. We found that both wild-type PA (WT-PA) and a receptor-binding-defective mutant (Ub-PA) were cleaved to PA63 independent of their ability to bind cells. This suggested a PA-acting protease activity in the blood. The protease cleaved PA at the furin cleavage sequence because furin site-modified PA mutants were not cleaved. Cleavage measured in vitro was leupeptin sensitive and dependent on calcium. Cell surface cleavage was important for toxin clearance, however, as Ub-PA and uncleavable PA mutants were cleared at slower rates than WT-PA. The cell binding-independent cleavage of PA was also verified by using Ub-PA (which is still cleaved) to rescue mice from toxin challenge by competitively binding circulating LF. This mutant was able to rescue mice even when given 12 h before toxin challenge. Its therapeutic ability was comparable to that of dominant-negative PA, which binds cells but does not allow LF translocation, and to the protection afforded through receptor clearance by WT-PA and uncleavable receptor binding-competent mutants. The PA cleavage and clearance observed in mice did not appear to have a role in the differential mouse susceptibility as it occurred similarly in lethal toxin (LT)-resistant DBA/2J and LT-sensitive BALB/cJ mice. Interestingly, PA63 was not found in LT-resistant or -sensitive rats and PA83 clearance was slower in rats than in mice. Finally, to determine the minimum amount of PA required in circulation for LT toxicity in mice, we administered time-separated injections of PA and LF and showed that lethality of LF for mice after PA was no longer measurable in circulation, suggesting active PA sequestration at tissue surfaces.


Sign in / Sign up

Export Citation Format

Share Document