tetanus toxin
Recently Published Documents


TOTAL DOCUMENTS

1175
(FIVE YEARS 46)

H-INDEX

69
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jun Ding ◽  
Eddy Albarran ◽  
Yue Sun ◽  
Yu Liu ◽  
Karthik Raju ◽  
...  

Abstract Two seemingly unrelated questions have long motivated studies in neuroscience: How are endocannabinoids, among the most powerful modulators of synaptic transmission, released from neurons? What are the physiological functions of synucleins, key contributors to Parkinson’s Disease? Here, we report an unexpected convergence of these two questions: Endocannabinoids are released via vesicular exocytosis from postsynaptic neurons by a synuclein-dependent mechanism. Specifically, we find that deletion of all synucleins selectively blocks all endocannabinoid-dependent synaptic plasticity; this block is reversed by postsynaptic expression of wildtype but not of mutant α-synuclein. Loading postsynaptic neurons with endocannabinoids via patch-pipette dialysis suppressed presynaptic neurotransmitter release in wildtype but not in synuclein-deficient neurons, suggesting that the synuclein deletion blocks endocannabinoid release. Direct optical monitoring of endocannabinoid release confirmed the requirement of synucleins. Given the role of synucleins in vesicular exocytosis, the requirement for synucleins in endocannabinoid release indicates that endocannabinoids are secreted via exocytosis. Consistent with this hypothesis, postsynaptic expression of tetanus-toxin light chain, which cleaves synaptobrevin SNAREs, also blocked endocannabinoid-dependent plasticity and release. The unexpected finding that endocannabinoids are released via synuclein-dependent exocytosis assigns a function to synucleins and resolves a longstanding puzzle of how neurons release endocannabinoids to induce synaptic plasticity.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1499
Author(s):  
Cornelia Roesl ◽  
Elizabeth R. Evans ◽  
Kosala N. Dissanayake ◽  
Veronika Boczonadi ◽  
Ross A. Jones ◽  
...  

Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066–1315 (emGFP-1066:TetC), 1093–1315 (emGFP-1093:TetC) and 1109–1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.


2021 ◽  
Author(s):  
Eddy Albarran ◽  
Yue Sun ◽  
Yu Liu ◽  
Karthik Raju ◽  
Ao Dong ◽  
...  

Two seemingly unrelated questions have long motivated studies in neuroscience: How are endocannabinoids, among the most powerful modulators of synaptic transmission, released from neurons? What are the physiological functions of synucleins, key contributors to Parkinson's Disease? Here, we report an unexpected convergence of these two questions: Endocannabinoids are released via vesicular exocytosis from postsynaptic neurons by a synuclein-dependent mechanism. Specifically, we find that deletion of all synucleins selectively blocks all endocannabinoid-dependent synaptic plasticity; this block is reversed by postsynaptic expression of wildtype but not of mutant α-synuclein. Loading postsynaptic neurons with endocannabinoids via patch-pipette dialysis suppressed presynaptic neurotransmitter release in wildtype but not in synuclein-deficient neurons, suggesting that the synuclein deletion blocks endocannabinoid release. Direct optical monitoring of endocannabinoid release confirmed the requirement of synucleins. Given the role of synucleins in vesicular exocytosis, the requirement for synucleins in endocannabinoid release indicates that endocannabinoids are secreted via exocytosis. Consistent with this hypothesis, postsynaptic expression of tetanus-toxin light chain, which cleaves synaptobrevin SNAREs, also blocked endocannabinoid-dependent plasticity and release. The unexpected finding that endocannabinoids are released via synuclein-dependent exocytosis assigns a function to synucleins and resolves a longstanding puzzle of how neurons release endocannabinoids to induce synaptic plasticity.


Author(s):  
P.T. O’Neil ◽  
V. Vasquez-Montes ◽  
L. Swint-Kruse ◽  
M.R. Baldwin ◽  
A.S. Ladokhin

Toxicon ◽  
2021 ◽  
Author(s):  
Somayeh Ghotloo ◽  
Forough Golsaz-Shirazi ◽  
Mohammad Mehdi Amiri ◽  
Mahmood Jeddi-Tehrani ◽  
Fazel Shokri

Author(s):  
Marina Betancor ◽  
Laura Moreno-Martínez ◽  
Óscar López-Pérez ◽  
Alicia Otero ◽  
Adelaida Hernaiz ◽  
...  

AbstractThe non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease or Alzheimer’s disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Artur A. M. L. Brandt ◽  
Rodrigo N. Rodrigues-da-Silva ◽  
Josué C. Lima-Junior ◽  
Carlos R. Alves ◽  
Franklin de Souza-Silva

Peptide TT830-843 from the tetanus toxin is a universal T-cell epitope. It helps in vaccination and induces T-cell activation. However, the fine molecular interaction between this antigen and the major histocompatibility complex (MHC) remains unknown. Molecular analysis of its interaction with murine MHC (H-2) was proposed to explore its immune response efficiency. Molecular dynamics simulations are important mechanisms for understanding the basis of protein-ligand interactions, and metadynamics is a useful technique for enhancing sampling in molecular dynamics. SPR (surface plasmon resonance) assays were used to validate whether the metadynamics results are in accordance with the experimental results. The peptide TT830-843 unbinding process was simulated, and the free energy surface reconstruction revealed a detailed conformational landscape. The simulation described the exiting path as a stepwise mechanism between progressive detachment states. We pointed out how the terminus regions act as anchors for binding and how the detachment mechanism includes the opening of α-helices to permit the peptide’s central region dissociation. The results indicated the peptide/H-2 receptor encounter occurs within a distance lesser than 27.5 Å, and the encounter can evolve to form a stable complex. SPR assays confirmed the complex peptide/H-2 as a thermodynamically stable system, exhibiting enough free energy to interact with TCR on the antigen-presenting cell surface. Therefore, combining in silico and in vitro assays provided significant evidence to support the peptide/H-2 complex formation.


2021 ◽  
Vol 10 (3) ◽  
pp. 134-139
Author(s):  
Mohammad-Taghi Rezayati ◽  
◽  
Ahmad-Reza Sayadi ◽  
Ziba Shaabani ◽  
Shokoofeh Moghaddam ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 109070
Author(s):  
Yueming Wang ◽  
Changwen Wu ◽  
Jinfang Yu ◽  
Shujian Lin ◽  
Tong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document