furin cleavage
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 164)

H-INDEX

31
(FIVE YEARS 10)

mBio ◽  
2022 ◽  
Author(s):  
Jinliang Wang ◽  
Jie Luo ◽  
Zhiyuan Wen ◽  
Xinxin Wang ◽  
Lei Shuai ◽  
...  

Some key mutations of SARS-CoV-2 spike protein, such as D614G and P681R mutations, increase the transmission or pathogenicity by enhancing the cleavage efficacy of spike protein by furin. Loss of the furin cleavage motif of SARS-CoV-2 spike protein reduces the virulence and transmission, suggesting that furin is an attractive antiviral drug target.


2022 ◽  
Author(s):  
Muhammad Zaki Jawaid ◽  
Avinash Baidya ◽  
Sofia Jakovcevic ◽  
Jacob Lusk ◽  
Rustin Mahboubi-Ardakani ◽  
...  

We demonstrate that AlphaFold and AlphaFold Multimer, implemented within the ColabFold suite, can accurately predict the structures of the furin enzyme with known six residue inhibitory peptides. Noting the similarity of the peptide inhibitors to polybasic furin cleavage domain insertion region of the SARS-CoV-2, which begins at P681, we implement this approach to study the wild type furin cleavage domain for the virus and several mutants. We introduce mutations in silico for alpha, omicron, and delta variants, for several sequences which have been rarely observed, for sequences which have not yet been observed, for other coronaviruses (NL63, OC43, HUK1a, HUK1b, MERS, and 229E), and for the H5N1 flu. We show that interfacial hydrogen bonds between the furin cleavage domain and furin are a good measure of binding strength that correlate well with endpoint binding free energy estimates, and conclude that among all candidate viral sequences studied, delta is near the very top binding strength within statistical accuracy. However, the binding strength of several rare sequences match delta within statistical accuracy. We find that the furin S1 pocket is optimized for binding arginine as opposed to lysine. This residue, typically at sequence position five, contains the most hydrogen bonds to the furin, and hydrogen bond count for just this residue shows a strong positive correlation with the overall hydrogen bond count . We demonstrate that the root mean square backbone C-alpha fluctuation of the first residue in the furin cleavage domain has a strong negative correlation with the interfacial hydrogen bond count. We show by considering the variation with the number of basic residues that the maximum mean number of interfacial hydrogen bonds expected is 15.7 at 4 basic residues.


2022 ◽  
Author(s):  
Yousef AT Morcos ◽  
Galyna Pryymachuk ◽  
Thorben Hoffmann ◽  
Steffen Luetke ◽  
Antje Gerken ◽  
...  

Asprosin, the C-terminal furin cleavage product of profibrillin-1, was reported to act as a hormone that circulates at nanomolar levels and is recruited to the liver where it induces G protein-coupled activation of the cAMP-PKA pathway and stimulates rapid glucose release into the circulation. Although derived from profibrillin-1, a multidomain extracellular matrix glycoprotein with a ubiquitous distribution in connective tissues, little is known about the tissue distribution of asprosin. In the current view, asprosin is mainly produced by white adipose tissue from where it is released into the blood in monomeric form. Here, by employing newly generated specific asprosin antibodies we monitored the distribution pattern of asprosin in human and murine connective tissues such as placenta, and muscle. Thereby we detected the presence of asprosin positive extracellular fibers. Further, by screening established cell lines for asprosin synthesis we found that most cells derived from musculoskeletal tissues render asprosin into an oligomerized form. This oligomerization is facilitated by transglutaminase activity and requires an intact fibrillin fiber network for proper linear deposition. Our data suggest a new extracellular storage mechanism of asprosin in oligomerized form which may regulate its cellular bioavailability in tissues.


2022 ◽  
Author(s):  
Pragya D Yadav ◽  
Nivedita Gupta ◽  
Varsha Potdar ◽  
Sreelekshmy Mohandas ◽  
Rima R Sahay ◽  
...  

Due to failure of virus isolation of Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, we infected Syrian hamsters and then passage into Vero CCL-81 cells. The Omicron sequences were studied to assess if hamster could incorporate any mutation to changes its susceptibility. L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene and absence of V17I mutation in E gene was observed in sequences of hamster passage unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequence which suggests usefulness of these isolates in future studies.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Lori A. Rowe ◽  
Brandon J. Beddingfield ◽  
Kelly Goff ◽  
Stephanie Z. Killeen ◽  
Nicole R. Chirichella ◽  
...  

In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Sourav Roy ◽  
Prithwi Ghosh ◽  
Abhirup Bandyapadhyay ◽  
Sankar Basu

The COVID-19 origin debate has greatly been influenced by Genome comparison studies of late, revealing the seemingly sudden emergence of the Furin-Like Cleavage Site at the S1/S2 junction of the SARS-CoV-2 Spike (FLCS_Spike) containing its 681_PRRAR_685 motif, absent in other related respiratory viruses. Being the rate-limiting (i.e., the slowest) step, the host Furin cleavage is instrumental in the abrupt increase in transmissibility in COVID-19, compared to earlier onsets of respiratory viral diseases. In such a context, the current paper entraps a disorder-to-order transition of the FLCS_Spike (concomitant to an entropy arrest) upon binding to Furin. The interaction clearly seems to be optimized for a more efficient proteolytic cleavage in SARS-CoV-2. The study further shows the formation of dynamically interchangeable and persistent networks of salt-bridges at the Spike-Furin interface in SARS-CoV-2 involving the three arginines (R682, R683, R685) of the FLCS_Spike with several anionic residues (E230, E236, D259, D264, D306) coming from Furin, strategically distributed around its catalytic triad. Multiplicity and structural degeneracy of plausible salt-bridge network archetypes seems the other key characteristic features of the Spike-Furin binding in SARS-CoV-2 allowing the system to breathe - a trademark of protein disorder transitions. Interestingly, with respect to the homologous interaction in SARS-CoV (2002/2003) taken as a baseline, the Spike-Furin binding events generally in the coronavirus lineage seems to have a preference for ionic bond formation, even with lesser number of cationic residues at their potentially polybasic FLCS_Spike patches. The interaction energies are suggestive of a characteristic metastabilities attributed to Spike-Furin interactions generally to the coronavirus lineage - which appears to be favorable for proteolytic cleavages targeted at flexible protein loops. The current findings not only offer novel mechanistic insights into the coronavirus molecular pathology and evolution but also add substantially to the existing theories of proteolytic cleavages.


2021 ◽  
Author(s):  
Massab Umair ◽  
Aamer Ikram ◽  
Zaira Rehman ◽  
Syed Adnan Haider ◽  
Nazish Badar ◽  
...  

The lineage A of SARS-CoV-2 has been around the world since the start of the pandemic. In Pakistan the last case of lineage A was reported in April, 2021 since then no case has been reported. In November, 2021 during routine genomic surveillance at National Institute of Health we have found 07 cases of lineage A from Islamabad, Pakistan. The study reports two novel deletions in the spike glycoprotein. One 09 amino acid deletion (68-76 a.a) is found in the S1 subunit while another 10 amino acid deletion (679-688 a.a) observed at the junction of S1/S2 referred as furin cleavage site. The removal of furin cleavage site may result in impaired virus replication thus decreasing its pathogenesis. The actual impact of these two deletions on the virus replication and disease dynamics needs to be studied in detail. Moreover, the enhanced genomic surveillance will be required to track the spread of this lineage in other parts of the country.


2021 ◽  
Author(s):  
Annette Choi ◽  
Deanndria Singleton ◽  
Alison Stout ◽  
Jean Millet ◽  
Gary Whittaker

The Coronaviridae is a highly diverse virus family, with reservoir hosts in a variety of wildlife species that encompass bats, birds and small mammals, including rodents. Within the taxonomic group alphacoronavirus, certain sub-genera (including the luchacoviruses) have phylogenetically distinct spike proteins, which remain essentially uncharacterized. Using in vitro and computational techniques, we analyzed the spike protein of the rodent coronavirus AcCoV-JC34 from the sub-genus luchacovirus, previously identified in Apodemus chevrieri (Chevriers field mouse). We show that AcCoV-JC34, unlike the other luchacoviruses, has a putative furin cleavage site (FCS) within its spike S1 domain, close to the S1/S2 interface. The pattern of basic amino acids within the AcCoV-JC34 FCS (-RR-R-) is identical to that found in pre-variant SARS-CoV-2, which is in itself atypical for an FCS, and suboptimal for furin cleavage. Our analysis shows that, while containing an -RR-R- motif, the AcCoVJC34 spike FCS is not cleaved by furin (unlike for SARS-CoV-2), suggesting the possible presence of a progenitor sequence for viral emergence from a distinct wildlife host.


Sign in / Sign up

Export Citation Format

Share Document