listeriolysin o
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 57)

H-INDEX

59
(FIVE YEARS 3)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 170
Author(s):  
Qingli Dong ◽  
Xinxin Lu ◽  
Binru Gao ◽  
Yangtai Liu ◽  
Muhammad Zohaib Aslam ◽  
...  

Listeria monocytogenes is a foodborne pathogen responsible for many food outbreaks worldwide. This study aimed to investigate the single and combined effect of fructooligosaccharides (FOS) and Lactiplantibacillus plantarum subsp. plantarum CICC 6257 (L. plantarum) on the growth, adhesion, invasion, and virulence of gene expressions of Listeria monocytogenes 19112 serotype 4b (L. monocytogenes). Results showed that L. plantarum combined with 2% and 4% (w/v) FOS significantly (p < 0.05) inhibited the growth of L. monocytogenes (3–3.5 log10 CFU/mL reduction) at the incubation temperature of 10 °C and 25 °C. Under the same combination condition, the invasion rates of L. monocytogenes to Caco-2 and BeWo cells were reduced more than 90% compared to the result of the untreated group. After L. plantarum was combined with the 2% and 4% (w/v) FOS treatment, the gene expression of actin-based motility, sigma factor, internalin A, internalin B, positive regulatory factor A, and listeriolysin O significantly (p < 0.05) were reduced over 91%, 77%, 92%, 89%, 79%, and 79% compared to the result of the untreated group, respectively. The inhibition level of the L. plantarum and FOS combination against L. monocytogenes was higher than that of FOS or L. plantarum alone. Overall, these results indicated that the L. plantarum and FOS combination might be an effective formula against L. monocytogenes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Damayanti Chakravarty ◽  
Gyan Sahukhal ◽  
Mark Arick ◽  
Morgan L. Davis ◽  
Janet R. Donaldson

Listeria monocytogenes is a gram-positive facultative anaerobic bacterium that causes the foodborne illness listeriosis. The pathogenesis of this bacterium depends on its survival in anaerobic, acidic, and bile conditions encountered throughout the gastrointestinal (GI) tract. This transcriptomics study was conducted to analyze the differences in transcript levels produced under conditions mimicking the GI tract. Changes in transcript levels were analyzed using RNA isolated from L. monocytogenes strain F2365 at both aerobic and anaerobic conditions, upon exposure to 0 and 1% bile at acidic and neutral pH. Transcripts corresponding to genes responsible for pathogenesis, cell wall associated proteins, DNA repair, transcription factors, and stress responses had variations in levels under the conditions tested. Upon exposure to anaerobiosis in acidic conditions, there were variations in the transcript levels for the virulence factors internalins, listeriolysin O, etc., as well as many histidine sensory kinases. These data indicate that the response to anaerobiosis differentially influences the transcription of several genes related to the survival of L. monocytogenes under acidic and bile conditions. Though further research is needed to decipher the role of oxygen in pathogenesis of L. monocytogenes, these data provide comprehensive information on how this pathogen responds to the GI tract.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ilanila Ilangumaran Ponmalar ◽  
Nirod K. Sarangi ◽  
Jaydeep K. Basu ◽  
K. Ganapathy Ayappa

Pore forming proteins are a broad class of pathogenic proteins secreted by organisms as virulence factors due to their ability to form pores on the target cell membrane. Bacterial pore forming toxins (PFTs) belong to a subclass of pore forming proteins widely implicated in bacterial infections. Although the action of PFTs on target cells have been widely investigated, the underlying membrane response of lipids during membrane binding and pore formation has received less attention. With the advent of superresolution microscopy as well as the ability to carry out molecular dynamics (MD) simulations of the large protein membrane assemblies, novel microscopic insights on the pore forming mechanism have emerged over the last decade. In this review, we focus primarily on results collated in our laboratory which probe dynamic lipid reorganization induced in the plasma membrane during various stages of pore formation by two archetypal bacterial PFTs, cytolysin A (ClyA), an α-toxin and listeriolysin O (LLO), a β-toxin. The extent of lipid perturbation is dependent on both the secondary structure of the membrane inserted motifs of pore complex as well as the topological variations of the pore complex. Using confocal and superresolution stimulated emission depletion (STED) fluorescence correlation spectroscopy (FCS) and MD simulations, lipid diffusion, cholesterol reorganization and deviations from Brownian diffusion are correlated with the oligomeric state of the membrane bound protein as well as the underlying membrane composition. Deviations from free diffusion are typically observed at length scales below ∼130 nm to reveal the presence of local dynamical heterogeneities that emerge at the nanoscale—driven in part by preferential protein binding to cholesterol and domains present in the lipid membrane. Interrogating the lipid dynamics at the nanoscale allows us further differentiate between binding and pore formation of β- and α-PFTs to specific domains in the membrane. The molecular insights gained from the intricate coupling that occurs between proteins and membrane lipids and receptors during pore formation are expected to improve our understanding of the virulent action of PFTs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Hobbs ◽  
Leah Allen ◽  
Megan Bias ◽  
Stephanie Johnson ◽  
Hannah DeRespiris ◽  
...  

Listeria monocytogenes is a Gram-positive, intracellular pathogen responsible for the highly fatal foodborne illness listeriosis. Establishing intracellular infections requires the coordinated expressions of a variety of virulence factors, such as the pore-forming toxin listeriolysin O (LLO), in response to various intra- and extracellular signals. For example, we previously reported that L. monocytogenes differentially modulated LLO production in response to exogenous propionate, a short chain fatty acid either used in salt form as a human food ingredient or produced endogenously by gut microbial fermentation. Therefore, propionate is likely a continuously present signal throughout the L. monocytogenes transmission and infection process. However, little is known about the role of propionate in modulating L. monocytogenes-host interactions. Here we investigated the impact of propionate treatment on L. monocytogenes intracellular infections using cell culture infection models. Propionate treatment was performed separately on L. monocytogenes or host cells before or during infections to better distinguish pathogen-versus-host responses to propionate. Intracellular CFU in RAW264.7 macrophages and plaque diameters in L-fibroblasts were measured as proxy for intracellular infection outcomes. Nitrite levels and cellular morphology were also measured to assess host responses to propionate. We found that propionate pretreatment of anaerobic, but not aerobic, L. monocytogenes significantly enhanced subsequent intracellular infections in both cell types and nitrite production by infected macrophages. Propionate treatment of uninfected macrophages significantly altered cell morphology, seen by longer cells and greater migration, and reduced nitrite concentration in activated macrophages. Treatment of macrophages with propionate prior to or during infections significantly inhibited intracellular growth of L. monocytogenes, including those pre-treated with propionate. These results showcased an opposing effect of propionate on L. monocytogenes intracellular infections and strongly support propionate as an important signaling molecule for both the pathogen and the host cell that can potentially alter the outcome of L. monocytogenes-host interactions.


Author(s):  
Charles G. Drake ◽  
Russell K. Pachynski ◽  
Sumit K. Subudhi ◽  
Douglas G. McNeel ◽  
Emmanuel S. Antonarakis ◽  
...  

Abstract Background The safety and immunogenicity of JNJ-64041809 (JNJ-809), a live-attenuated, double-deleted Listeria monocytogenes (LADD Lm)-based immunotherapy targeting 4 relevant prostate cancer antigens, was evaluated in a phase 1 study in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods Men with progressive mCRPC who had received ≥2 prior approved therapies were enrolled. Primary study objectives were to determine the recommended phase 2 dose (RP2D) and to evaluate the safety and immunogenicity of JNJ-809. Results A total of 26 patients received JNJ-809 (1 × 108 CFU (n = 6); 1 × 109 CFU (n = 20)). No dose-limiting toxicities were reported, and 1 × 109 CFU was selected as the RP2D. The most common adverse events (AEs) reported were chills (92%), pyrexia (81%), and fatigue (62%). The most frequent grade ≥3 AEs were lymphopenia (27%) and hypertension (23%). Serious AEs were reported in 27% of patients including 1 patient with grade 3 intestinal obstruction. JNJ-809 transiently induced peripheral cytokines, including interferon-γ, interleukin-10, and tumor necrosis factor-α. Of the 7 patients evaluable for T cell responses at the 1 × 109 CFU dose, evidence of post-treatment antigenic responses were observed in 6 to the Listeria antigen listeriolysin O and in 5 to ≥1 of the 4 encoded tumor antigens. Best overall response was stable disease in 13/25 response-evaluable patients. The study was terminated early as data collected were considered sufficient to evaluate safety and immunogenicity. Conclusions JNJ-809 has manageable safety consistent with other LADD Lm-based therapies. Limited antigen-specific immune responses were observed, which did not translate into objective clinical responses.


Author(s):  
Bilal Ahmad Malla ◽  
Sunitha Ramanjeneya ◽  
Jess Vergis ◽  
Satyaveer Singh Malik ◽  
Sukhadeo Baliram Barbuddhe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document