anthrax toxin
Recently Published Documents


TOTAL DOCUMENTS

553
(FIVE YEARS 64)

H-INDEX

66
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhiqiang Dong ◽  
Jinglong Zhang ◽  
Liang Niu ◽  
Guokuo Hou ◽  
Zhenshan Gao ◽  
...  

Accumulating studies revealed association between development of glioma and miRNA dysregulation. A case in point is miR-381-3p, but its mechanism in glioma is unclear yet. In this work, we confirmed that overexpressed miR-381-3p repressed biological functions of glioma cells. Additionally, we also discovered that upregulated anthrax toxin receptor 1 (ANTXR1) was negatively mediated by miR-381-3p. We further proved that miR-381-3p-targeted ANTXR1 was able to counteract the suppression of miR-381-3p on biological functions of glioma. We concluded that miR-381-3p and ANTXR1 were both important factors in modulating glioma progression. miR-381-3p/ANTXR1 axis is expected to be a molecular target for glioma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lauren A. Choate ◽  
Gilad Barshad ◽  
Pierce W. McMahon ◽  
Iskander Said ◽  
Edward J. Rice ◽  
...  

AbstractThe advent of animal husbandry and hunting increased human exposure to zoonotic pathogens. To understand how a zoonotic disease may have influenced human evolution, we study changes in human expression of anthrax toxin receptor 2 (ANTXR2), which encodes a cell surface protein necessary for Bacillus anthracis virulence toxins to cause anthrax disease. In immune cells, ANTXR2 is 8-fold down-regulated in all available human samples compared to non-human primates, indicating regulatory changes early in the evolution of modern humans. We also observe multiple genetic signatures consistent with recent positive selection driving a European-specific decrease in ANTXR2 expression in multiple tissues affected by anthrax toxins. Our observations fit a model in which humans adapted to anthrax disease following early ecological changes associated with hunting and scavenging, as well as a second period of adaptation after the rise of modern agriculture.


2021 ◽  
Author(s):  
Matthias Przyklenk ◽  
Stefanie Elisabeth Heumueller ◽  
Steffen Luetke ◽  
Gerhard Sengle ◽  
Manuel Koch ◽  
...  

The widely expressed microfibril-forming collagen VI is subject to proteolytic cleavage and it has been proposed that the cleaved off C-terminal Kunitz domain (C5) of the α3 chain is an adipokine important for tumor progression and fibrosis. Under the name endotrophin the C5 fragment has also been shown to be a potent biomarker for fibro-inflammatory diseases. However, the biochemical mechanisms behind endotrophin activity have not been investigated. In earlier studies, the anthrax toxin receptor 1 was found to bind to C5, but this potential interaction has not been further studied. Given the proposed physiological role of endotrophin we aimed to determine how the endotrophin signal is transmitted to the recipient cells. Surprisingly, we could not detect any interaction between endotrophin and anthrax toxin receptor 1 or its close relative, anthrax toxin receptor 2. Moreover, we could not detect binding of fully assembled collagen VI to either anthrax toxin receptor. We also performed similar experiments with the collagen VI surface receptor NG2 (CSPG4). We could confirm that NG2 is a collagen VI receptor that binds to assembled collagen VI, but not to the cleaved C5/endotrophin. A cellular receptor for C5/endotrophin therefore still remains elusive.


2021 ◽  
Vol 8 ◽  
Author(s):  
Silvia Stefania Longoni ◽  
Natalia Tiberti ◽  
Zeno Bisoffi ◽  
Chiara Piubelli

Following the SARS-CoV-2 pandemic, several clinical trials have been approved for the investigation of the possible use of mAbs, supporting the potential of this technology as a therapeutic approach for infectious diseases. The first monoclonal antibody (mAb), Muromonab CD3, was introduced for the prevention of kidney transplant rejection more than 30 years ago; since then more than 100 mAbs have been approved for therapeutic purposes. Nonetheless, only four mAbs are currently employed for infectious diseases: Palivizumab, for the prevention of respiratory syncytial virus (RSV) infections, Raxibacumab and Obiltoxaximab, for the prophylaxis and treatment against anthrax toxin and Bezlotoxumab, for the prevention of Clostridium difficile recurrence. Protozoan infections are often neglected diseases for which effective and safe chemotherapies are generally missing. In this context, drug resistance and drug toxicity are two crucial problems. The recent advances in bioinformatics, parasite genomics, and biochemistry methodologies are contributing to better understand parasite biology, which is essential to guide the development of new therapies. In this review, we present the efforts that are being made in the evaluation of mAbs for the prevention or treatment of leishmaniasis, Chagas disease, malaria, and toxoplasmosis. Particular emphasis will be placed on the potential strengths and weaknesses of biological treatments in the control of these protozoan diseases that are still affecting hundreds of thousands of people worldwide.


Author(s):  
F. Hoelzgen ◽  
R. Zalk ◽  
R. Alcalay ◽  
S. Cohen-Schwartz ◽  
G. Garau ◽  
...  

Anthrax infection is associated with severe illness and high mortality. Protective antigen (PA) is the central component of the anthrax toxin, which is one of two major virulence factors of Bacillus anthracis, the causative agent of anthrax disease. Upon endocytosis, PA opens a pore in the membranes of endosomes, through which the cytotoxic enzymes of the toxin are extruded. The PA pore is formed by a cooperative conformational change in which the membrane-penetrating loops of PA associate, forming a hydrophobic rim that pierces the membrane. Due to its crucial role in anthrax progression, PA is an important target for monoclonal antibody-based therapy. cAb29 is a highly effective neutralizing antibody against PA. Here, the cryo-EM structure of PA in complex with the Fab portion of cAb29 was determined. It was found that cAb29 neutralizes the toxin by clamping the membrane-penetrating loop of PA to the static surface-exposed loop of the D3 domain of the same subunit, thereby preventing pore formation. These results provide the structural basis for the antibody-based neutralization of PA and bring into focus the membrane-penetrating loop of PA as a target for the development of better anti-anthrax vaccines.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1285
Author(s):  
Lukas Becker ◽  
Jasleen Singh Badwal ◽  
Fabian Brandl ◽  
Wouter P. R. Verdurmen ◽  
Andreas Plückthun

Anthrax toxin has evolved to translocate its toxic cargo proteins to the cytosol of cells carrying its cognate receptor. Cargo molecules need to unfold to penetrate the narrow pore formed by its membrane-spanning subunit, protective antigen (PA). Various alternative cargo molecules have previously been tested, with some showing only limited translocation efficiency, and it may be assumed that these were too stable to be unfolded before passing through the anthrax pore. In this study, we systematically and quantitatively analyzed the correlation between the translocation of various designed ankyrin repeat proteins (DARPins) and their different sizes and thermodynamic stabilities. To measure cytosolic uptake, we used biotinylation of the cargo by cytosolic BirA, and we measured cargo equilibrium stability via denaturant-induced unfolding, monitored by circular dichroism (CD). Most of the tested DARPin cargoes, including target-binding ones, were translocated to the cytosol. Those DARPins, which remained trapped in the endosome, were confirmed by CD to show a high equilibrium stability. We could pinpoint a stability threshold up to which cargo DARPins still get translocated to the cytosol. These experiments have outlined the requirements for translocatable binding proteins, relevant stability measurements to assess translocatable candidates, and guidelines to further engineer this property if needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra J. Machen ◽  
Mark T. Fisher ◽  
Bret D. Freudenthal

AbstractTranslocation is essential to the anthrax toxin mechanism. Protective antigen (PA), the binding component of this AB toxin, forms an oligomeric pore that translocates lethal factor (LF) or edema factor, the active components of the toxin, into the cell. Structural details of the translocation process have remained elusive despite their biological importance. To overcome the technical challenges of studying translocation intermediates, we developed a method to immobilize, transition, and stabilize anthrax toxin to mimic important physiological steps in the intoxication process. Here, we report a cryoEM snapshot of PApore translocating the N-terminal domain of LF (LFN). The resulting 3.3 Å structure of the complex shows density of partially unfolded LFN near the canonical PApore binding site. Interestingly, we also observe density consistent with an α helix emerging from the 100 Å β barrel channel suggesting LF secondary structural elements begin to refold in the pore channel. We conclude the anthrax toxin β barrel aids in efficient folding of its enzymatic payload prior to channel exit. Our hypothesized refolding mechanism has broader implications for pore length of other protein translocating toxins.


Author(s):  
Goli Yamini ◽  
Subbarao Kanchi ◽  
Nnanya Kalu ◽  
Sanaz Momben Abolfath ◽  
Stephen H. Leppla ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document