scholarly journals The Sin3p PAH Domains Provide Separate Functions Repressing Meiotic Gene Transcription in Saccharomyces cerevisiae

2010 ◽  
Vol 9 (12) ◽  
pp. 1835-1844 ◽  
Author(s):  
Michael J. Mallory ◽  
Michael J. Law ◽  
Lela E. Buckingham ◽  
Randy Strich

ABSTRACT Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains.

2006 ◽  
Vol 84 (5) ◽  
pp. 813-822 ◽  
Author(s):  
José R. Blesa ◽  
José Hernández-Yago

TOMM70 is a subunit of the outer mitochondrial membrane translocase that plays a major role as a receptor of hydrophobic preproteins targeted to mitochondria. We have previously reported 2 binding sites for the transcription factor GABP–NRF-2 in the promoter region of the human TOMM70 gene that are important in activating transcription. To assess the functionality and actual role of these sites, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays were carried out. We conclude that GABP–NRF-2 binds in vivo to the TOMM70 promoter, and that the 2 GABP–NRF-2 binding sites of the promoter have different functional contributions in promoting TOMM70 expression. Evidence is provided that they work in an additive manner as single sites.


1960 ◽  
Vol 49 (4) ◽  
pp. 370-371
Author(s):  
A. Kish ◽  
A. Epereshi ◽  
C. Hadnad ◽  
I. Chegedi ◽  
L. Nemesh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document