expression evidence
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 19)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Alexander Foss ◽  
Tryfon Rotsos ◽  
Theo Empeslidis ◽  
Victor Chong

Age-related macular degeneration (AMD) is a leading cause of blindness. Late AMD can be classified into exudative (commonly known as wet AMD [wAMD]) or dry AMD, both of which may progress to macular atrophy (MA). MA causes irreversible vision loss and currently has no approved pharmacological treatment. The standard of care for wAMD is treatment with anti-vascular endothelial growth factors (VEGF). However, recent evidence suggests that anti-VEGF treatment may play a role in the development of MA. Therefore, it is important to identify risk factors for the development of MA in patients with wAMD. For example, excessive blockade of VEGF through intense use of anti-VEGF agents may accelerate the development of MA. Patients with type III macular neovascularisation (retinal angiomatous proliferation) have a particularly high risk of MA. These patients are characterised as having a pre-existing thin choroid (age-related choroidopathy), suggesting that the choroidal circulation is unable to respond to increased VEGF expression. Evidence suggests that subretinal fluid (possibly indicative of residual VEGF activity) may play a protective role. Patients receiving anti-VEGF agents must be assessed for overall risk of MA and there is an unmet medical need to prevent the development of MA without undertreating wAMD.


2021 ◽  
Vol 11 ◽  
Author(s):  
Karolina Heyduk ◽  
Edward V. McAssey ◽  
Jane Grimwood ◽  
Shengqiang Shu ◽  
Jeremy Schmutz ◽  
...  

Hybridization in plants results in phenotypic and genotypic perturbations that can have dramatic effects on hybrid physiology, ecology, and overall fitness. Hybridization can also perturb epigenetic control of transposable elements, resulting in their proliferation. Understanding the mechanisms that maintain genomic integrity after hybridization is often confounded by changes in ploidy that occur in hybrid plant species. Homoploid hybrid species, which have no change in chromosome number relative to their parents, offer an opportunity to study the genomic consequences of hybridization in the absence of change in ploidy. Yucca gloriosa (Asparagaceae) is a young homoploid hybrid species, resulting from a cross between Yucca aloifolia and Yucca filamentosa. Previous analyses of ∼11 kb of the chloroplast genome and nuclear-encoded microsatellites implicated a single Y. aloifolia genotype as the maternal parent of Y. gloriosa. Using whole genome resequencing, we assembled chloroplast genomes from 41 accessions of all three species to re-assess the hybrid origins of Y. gloriosa. We further used re-sequencing data to annotate transposon abundance in the three species and mRNA-seq to analyze transcription of transposons. The chloroplast phylogeny and haplotype analysis suggest multiple hybridization events contributing to the origin of Y. gloriosa, with both parental species acting as the maternal donor. Transposon abundance at the superfamily level was significantly different between the three species; the hybrid was frequently intermediate to the parental species in TE superfamily abundance or appeared more similar to one or the other parent. In only one case—Copia LTR transposons—did Y. gloriosa have a significantly higher abundance relative to either parent. Expression patterns across the three species showed little increased transcriptional activity of transposons, suggesting that either no transposon release occurred in Y. gloriosa upon hybridization, or that any transposons that were activated via hybridization were rapidly silenced. The identification and quantification of transposon families paired with expression evidence paves the way for additional work seeking to link epigenetics with the important trait variation seen in this homoploid hybrid system.


Nanoscale ◽  
2021 ◽  
Author(s):  
Marco Orecchioni ◽  
Laura Fusco ◽  
Raghvendra Mall ◽  
Valentina Bordoni ◽  
Claudia Fuoco ◽  
...  

While both graphene oxide and amino functionalized graphene oxide exert strong pro-activating properties on B cells, the latter is also able to induce a B cell receptor signaling dysregulation, which triggers the production of granzyme B.


2020 ◽  
Vol 11 ◽  
Author(s):  
Massimo Ferrara ◽  
Antonia Gallo ◽  
Giancarlo Perrone ◽  
Donato Magistà ◽  
Scott E. Baker

The widespread use of Next-Generation Sequencing has opened a new era in the study of biological systems by significantly increasing the catalog of fungal genomes sequences and identifying gene clusters for known secondary metabolites as well as novel cryptic ones. However, most of these clusters still need to be examined in detail to completely understand the pathway steps and the regulation of the biosynthesis of metabolites. Genome sequencing approach led to the identification of the biosynthetic genes cluster of ochratoxin A (OTA) in a number of producing fungal species. Ochratoxin A is a potent pentaketide nephrotoxin produced by Aspergillus and Penicillium species and found as widely contaminant in food, beverages and feed. The increasing availability of several new genome sequences of OTA producer species in JGI Mycocosm and/or GenBank databanks led us to analyze and update the gene cluster structure in 19 Aspergillus and 2 Penicillium OTA producing species, resulting in a well conserved organization of OTA core genes among the species. Furthermore, our comparative genome analyses evidenced the presence of an additional gene, previously undescribed, located between the polyketide and non-ribosomal synthase genes in the cluster of all the species analyzed. The presence of a SnoaL cyclase domain in the sequence of this gene supports its putative role in the polyketide cyclization reaction during the initial steps of the OTA biosynthesis pathway. The phylogenetic analysis showed a clustering of OTA SnoaL domains in accordance with the phylogeny of OTA producing species at species and section levels. The characterization of this new OTA gene, its putative role and its expression evidence in three important representative producing species, are reported here for the first time.


2020 ◽  
Vol 10 (4) ◽  
pp. 397-403
Author(s):  
Ruby Dwivedi ◽  
Shaleen Chandra ◽  
Divya Mehrotra ◽  
Vineet Raj ◽  
Rahul Pandey
Keyword(s):  

2020 ◽  
Vol 6 (3) ◽  
pp. 39
Author(s):  
Samara M. C. Lemos ◽  
Luiz F. C. Fonçatti ◽  
Romain Guyot ◽  
Alexandre R. Paschoal ◽  
Douglas S. Domingues

Coffea canephora grains are highly traded commodities worldwide. Non-coding RNAs (ncRNAs) are transcriptional products involved in genome regulation, environmental responses, and plant development. There is not an extensive genome-wide analysis that uncovers the ncRNA portion of the C. canephora genome. This study aimed to provide a curated characterization of six ncRNA classes in the Coffea canephora genome. For this purpose, we employed a combination of similarity-based and structural-based computational approaches with stringent curation. Candidate ncRNA loci had expression evidence analyzed using sRNA-seq libraries. We identified 7455 ncRNA loci (6976 with transcriptional evidence) in the C. canephora genome. This comprised of total 115 snRNAs, 1031 snoRNAs, 92 miRNA precursors, 602 tRNAs, 72 rRNAs, and 5064 lncRNAs. For miRNAs, we identified 159 putative high-confidence targets. This study was the most extensive genomic catalog of curated ncRNAs in the Coffea genus. This data might help elaborating more robust hypotheses in future comparative genomic studies as well as gene regulation and genome dynamics, helping to understand the molecular basis of domestication, environmental adaptation, resistance to pests and diseases, and coffee productivity.


2020 ◽  
Vol 21 (6) ◽  
pp. 2092 ◽  
Author(s):  
Alessia Indrieri ◽  
Sabrina Carrella ◽  
Pietro Carotenuto ◽  
Sandro Banfi ◽  
Brunella Franco

MicroRNAs (miRNAs) are small noncoding RNAs playing a fundamental role in the regulation of gene expression. Evidence accumulating in the past decades indicate that they are capable of simultaneously modulating diverse signaling pathways involved in a variety of pathophysiological processes. In the present review, we provide a comprehensive overview of the function of a highly conserved group of miRNAs, the miR-181 family, both in physiological as well as in pathological conditions. We summarize a large body of studies highlighting a role for this miRNA family in the regulation of key biological processes such as embryonic development, cell proliferation, apoptosis, autophagy, mitochondrial function, and immune response. Importantly, members of this family have been involved in many pathological processes underlying the most common neurodegenerative disorders as well as different solid tumors and hematological malignancies. The relevance of this miRNA family in the pathogenesis of these disorders and their possible influence on the severity of their manifestations will be discussed. A better understanding of the miR-181 family in pathological conditions may open new therapeutic avenues for devasting disorders such as neurodegenerative diseases and cancer.


Sign in / Sign up

Export Citation Format

Share Document