Distinct functional contributions of 2 GABP–NRF-2 recognition sites within the context of the human TOMM70 promoter

2006 ◽  
Vol 84 (5) ◽  
pp. 813-822 ◽  
Author(s):  
José R. Blesa ◽  
José Hernández-Yago

TOMM70 is a subunit of the outer mitochondrial membrane translocase that plays a major role as a receptor of hydrophobic preproteins targeted to mitochondria. We have previously reported 2 binding sites for the transcription factor GABP–NRF-2 in the promoter region of the human TOMM70 gene that are important in activating transcription. To assess the functionality and actual role of these sites, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays were carried out. We conclude that GABP–NRF-2 binds in vivo to the TOMM70 promoter, and that the 2 GABP–NRF-2 binding sites of the promoter have different functional contributions in promoting TOMM70 expression. Evidence is provided that they work in an additive manner as single sites.

2008 ◽  
Vol 86 (1) ◽  
pp. 46-56 ◽  
Author(s):  
José R. Blesa ◽  
Jesús A. Prieto-Ruiz ◽  
Beth A. Abraham ◽  
Bridget L. Harrison ◽  
Anita A. Hegde ◽  
...  

The human TOMM34 gene encodes a cytosolic protein with chaperone-like activity that helps import some preproteins to the mitochondria by keeping them in an unfolded, import-compatible state. TOMM34 was found to be upregulated frequently in colorectal tumors, suggesting that it also has a role in the growth of cancer cells. In this context, TOMM34 is a potential target for novel anticancer drugs, and it might also be used in the diagnosis of colorectal cancer. Nuclear respiratory factors (NRFs) play an important role in governing the nuclear–mitochondrial interactions implicated in mitochondrial biogenesis. Our previous studies revealed that NRFs promote the expression of the major members of the mitochondrial transport machinery, TOMM70 and TOMM20. Here we report the existence of binding sites for NRF-1, Sp1, and NRF-2 in the 5′ region of the human TOMM34 gene. We determined the effects of mutations at these sites on promoter activity in HeLa S3 and A204 cells, in conjunction with chromatin immunoprecipitation experiments, electrophoretic mobility shift assays, and in vivo methylation analysis of the promoter region. We conclude that NRF-1 is the main transcription factor regulating the expression of TOMM34. Sp1 interacts with NRF-1 to stimulate the promoter's full activity.


2008 ◽  
Vol 410 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Kwang Soo Kim ◽  
Hee Young Kim ◽  
Eun-hye Joe ◽  
Ilo Jou

Many brain cells secrete MMPs (matrix metalloproteinases), and increased or misregulated MMP levels are found in neurodegenerative disorders. Here we report that MMP-3 transcription and protein secretion were increased in rat brain astrocytes stimulated with lipopolysaccharide, gangliosides or interferon-γ. Sequential deletion of the MMP-3 promoter revealed that sequences between −0.5 kb and the start codon were crucial for the transcriptional induction of MMP-3. In addition, experiments using pharmacological inhibitors of individual mitogen-activated protein kinases revealed that MMP-3 induction and promoter activity involved Jun N-terminal kinase, a representative upstream signal of AP-1 (activator protein-1). Sequence analyses of the region of the MMP-3 promoter 500 bp from the start codon indicated the presence of three AP-1 binding sequences. Among them, electrophoretic-mobility-shift assays as well as site-directed mutagenesis of individual AP-1 sequences revealed that distal and middle, but not proximal, sequences largely mediated its induction. Together, these results indicate that AP-1 could control MMP-3 induction in brain astrocytes and that its regulation through specific AP-1 elements could be exploited in the treatment of brain pathologies in which increased expression of MMP-3 plays crucial roles.


2006 ◽  
Vol 188 (9) ◽  
pp. 3208-3218 ◽  
Author(s):  
Britton Ranson-Olson ◽  
Denise F. Jones ◽  
Timothy J. Donohue ◽  
Jill H. Zeilstra-Ryalls

ABSTRACT The hemA gene codes for one of two synthases in Rhodobacter sphaeroides 2.4.1 which catalyze the formation of 5-aminolevulinic acid. We have examined the role of PrrA, a DNA binding protein that is associated with the metabolic switch between aerobic growth and anoxygenic photosynthetic growth, in hemA expression and found that hemA transcription is directly activated by PrrA. Using electrophoretic mobility shift assays and DNase I protection assays, we have mapped two binding sites for PrrA within the hemA upstream sequences, each of which contains an identical 9-bp motif. Using lacZ transcription reporter plasmids in wild-type strain 2.4.1 and PrrA− mutant strain PRRA2, we showed that PrrA was required for maximal expression. We also found that the relative impacts of altering DNA sequences within the two binding sites are different depending on whether cells are growing aerobically or anaerobically. This reveals a greater level of complexity associated with PrrA-mediated regulation of transcription than has been heretofore described. Our findings are of particular importance with respect to those genes regulated by PrrA having more than one upstream binding site. In the case of the hemA gene, we discuss possibilities as to how these new insights can be accommodated within the context of what has already been established for hemA transcription regulation in R. sphaeroides.


2014 ◽  
Vol 197 (6) ◽  
pp. 1026-1039 ◽  
Author(s):  
Ken Vercammen ◽  
Qing Wei ◽  
Daniel Charlier ◽  
Andreas Dötsch ◽  
Susanne Haüssler ◽  
...  

The PA4203 gene encodes a LysR regulator and lies between theppgLgene (PA4204), which encodes a periplasmic gluconolactonase, and, in the opposite orientation, the PA4202 (nmoA) gene, coding for a nitronate monooxygenase, andddlA(PA4201), encoding ad-alanine alanine ligase. The intergenic regions between PA4203 andppgLand between PA4203 andnmoAare very short (79 and 107 nucleotides, respectively). Here we show that PA4203 (nmoR) represses its own transcription and the expression ofnmoA. A chromatin immunoprecipitation analysis showed the presence of a single NmoR binding site betweennmoAandnmoR, which was confirmed by electrophoretic mobility shift assays (EMSAs) with the purified NmoR protein. Despite this observation, a transcriptome analysis revealed more genes to be affected in annmoRmutant, including genes known to be part of the MexT LysR activator regulon. The PA1225 gene, encoding a quinone oxidoreductase, was the most highly upregulated gene in thenmoRdeletion mutant, independently of MexT. Finally, deletion of thenmoAgene resulted in an increased sensitivity of the cells to 3-nitropropionic acid (3-NPA), confirming the role of the nitronate monooxygenase protein in the detoxification of nitronate.


1998 ◽  
Vol 72 (7) ◽  
pp. 5735-5744 ◽  
Author(s):  
Thomas G. Gillette ◽  
James A. Borowiec

ABSTRACT The modulation of DNA replication by transcription factors was examined by using bovine papillomavirus type 1 (BPV). BPV replication in vivo requires two viral proteins: E1, an origin-binding protein, and E2, a transcriptional transactivator. In the origin, E1 interacts with a central region flanked by two binding sites for E2 (BS11 and BS12), of which only BS12 has been reported to be essential for replication in vivo. Using chemical interference and electrophoretic mobility shift assays, we found that the binding of E2 to each site stimulates the formation of distinct E1-origin complexes. A high-mobility C1 complex is formed by using critical E2 contacts to BS12 and E1 contacts to the dyad symmetry element. In contrast, interaction of E2 with the BS11 element on the other origin flank promotes the formation of the lower-mobility C3 complex. C3 is a novel species that resembles C2, a previously identified complex that is replication active and formed by E1 alone. The binding of E1 greatly differs in the C1 and C3 complexes, with E1 in the C1 complex limited to the origin dyad symmetry region and E1 in the C3 complex encompassing the region from the proximal edge of BS11 through the distal edge of BS12. We found that the presence of both E2-binding sites is necessary for wild-type replication activity in vivo, as well as for maximal production of the C3 complex. These results show that in the normal viral context, BS11 and BS12 play separate but synergetic roles in the initiation of viral DNA replication that are dependent on their location within the origin. Our data suggest a model in which the binding of E2 to each site sequentially stimulates the formation of distinct E1-origin complexes, leading to the replication-competent complex.


2015 ◽  
Vol 197 (18) ◽  
pp. 2999-3006 ◽  
Author(s):  
Qutaiba O. Ababneh ◽  
Jennifer K. Herman

ABSTRACTExponentially growing cultures ofBacillus subtilis(PY79) are composed primarily of nonmotile, chained cells. The alternative sigma factor, SigD, promotes the phenotypic switch from nonmotile, chained cells to unchained, motile cells. In the present work, we investigated the role of the GTP-sensing protein CodY in the regulation of SigD. Deletion ofcodYresulted in a significant increase in SigD accumulation and activity and shifted the proportion of unchained cells up from ∼15% to ∼75%, suggesting that CodY is an important regulator of SigD. CodY was previously shown to bind to the PD3and Pfla/chepromoters located upstream of the first gene in thesigD-containingfla/cheoperon. Using electrophoretic mobility shift assays, we found that CodY also binds to two other previously uncharacterized sites within thefla/cheoperon. Mutations in any one of the three binding sites resulted in SigD levels similar to those seen with the ΔcodYmutant, suggesting that each site is sufficient to tip cells toward a maximal level of CodY-dependent SigD accumulation. However, mutations in all three sites were required to phenocopy the ΔcodYmutant's reduced level of cell chaining, consistent with the idea that CodY binding in thefla/cheoperon is also important for posttranslational control of SigD activity.IMPORTANCEOne way that bacteria adapt quickly and efficiently to changes in environmental quality is to employ global transcriptional regulators capable of responding allosterically to key cellular metabolites. In this study, we found that the conserved GTP-sensing protein CodY directly regulates cell motility and chaining inB. subtilisby controlling expression and activity of SigD. Our results suggest thatB. subtilisbecomes poised for cell dispersal as intracellular GTP levels are depleted.


2009 ◽  
Vol 191 (17) ◽  
pp. 5458-5470 ◽  
Author(s):  
William Spencer ◽  
Rania Siam ◽  
Marie-Claude Ouimet ◽  
D. Patrick Bastedo ◽  
Gregory T. Marczynski

ABSTRACT CtrA controls cell cycle programs of chromosome replication and genetic transcription. Phosphorylated CtrA∼P exhibits high affinity (dissociation constant [Kd ], <10 nM) for consensus TTAA-N7-TTAA binding sites with “typical” (N = 7) spacing. We show here that ctrA promoters P1 and P2 use low-affinity (Kd , >500 nM) CtrA binding sites with “atypical” (N ≠ 7) spacing. Footprints demonstrated that phosphorylated CtrA∼P does not exhibit increased affinity for “atypical” sites, as it does for sites in the replication origin. Instead, high levels of CtrA (>10 μM) accumulate, which can drive CtrA binding to “atypical” sites. In vivo cross-linking showed that when the stable CtrAΔ3 protein persists during the cell cycle, the “atypical” sites at ctrA and motB are persistently bound. Interestingly, the cell cycle timing of ctrA P1 and P2 transcription is not altered by persistent CtrAΔ3 binding. Therefore, operator DNA occupancy is not sufficient for regulation, and it is the cell cycle variation of CtrA∼P phosphorylation that provides the dominant “activation” signal. Protein dimerization is one potential means of “activation.” The glutathione S-transferase (GST) protein dimerizes, and fusion with CtrA (GST-CtrA) creates a stable dimer with enhanced affinity for TTAA motifs. Electrophoretic mobility shift assays with GST-CtrA revealed cooperative modes of binding that further distinguish the “atypical” sites. GST-CtrA also binds a single TTAA motif in ctrA P1 aided by DNA in the extended TTAACCAT motif. We discuss how “atypical” sites are a common yet distinct category of CtrA regulatory sites and new implications for the working and evolution of cell cycle control networks.


2009 ◽  
Vol 192 (3) ◽  
pp. 624-635 ◽  
Author(s):  
Michèle Coddeville ◽  
Paul Ritzenthaler

ABSTRACT The integrase of the temperate bacteriophage mv4 catalyzes site-specific recombination between the phage attP site and the host attB site during Lactobacillus delbrueckii lysogenization. The mv4 prophage is excised during the induction of lytic growth. Excisive site-specific recombination between the attR and attL sites is also catalyzed by the phage-encoded recombinase, but the directionality of the recombination is determined by a second phage-encoded protein, the recombination directionality factor (RDF). We have identified and functionally characterized the RDF involved in site-specific excision of the prophage genome. The mv4 RDF, mv4Xis, is encoded by the second gene of the early lytic operon. It is a basic protein of 56 amino acids. Electrophoretic mobility shift assays demonstrated that mv4Xis binds specifically to the attP and attR sites via two DNA-binding sites, introducing a bend into the DNA. In vitro experiments and in vivo recombination assays with plasmids in Escherichia coli and Lactobacillus plantarum demonstrated that mv4Xis is absolutely required for inter- or intramolecular recombination between the attR and attL sites. In contrast to the well-known phage site-specific recombination systems, the integrative recombination between the attP and attB sites seems not to be inhibited by the presence of mv4Xis.


Sign in / Sign up

Export Citation Format

Share Document