meiotic gene
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 2)

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 290
Author(s):  
Abdul Kader Alabdullah ◽  
Graham Moore ◽  
Azahara C. Martín

Although most flowering plants are polyploid, little is known of how the meiotic process evolves after polyploidisation to stabilise and preserve fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and diverged (TaZIP4-B2). TaZIP4-B2 was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these meiotic stabilising effects could be important for preserving wheat fertility. A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting. Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number occurred when Tazip4-B2 mutant plants were pollinated with the less viable Tazip4-B2 mutant pollen rather than with wild type pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis. These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should further investigate the role of TaZIP4-B2 on female fertility and assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change.


PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001164
Author(s):  
Xianqing Jia ◽  
Qijun Zhang ◽  
Mengmeng Jiang ◽  
Ju Huang ◽  
Luyao Yu ◽  
...  

In contrast to common meiotic gene conversion, mitotic gene conversion, because it is so rare, is often ignored as a process influencing allelic diversity. We show that if there is a large enough number of premeiotic cell divisions, as seen in many organisms without early germline sequestration, such as plants, this is an unsafe position. From examination of 1.1 million rice plants, we determined that the rate of mitotic gene conversion events, per mitosis, is 2 orders of magnitude lower than the meiotic rate. However, owing to the large number of mitoses between zygote and gamete and because of long mitotic tract lengths, meiotic and mitotic gene conversion can be of approximately equivalent importance in terms of numbers of markers converted from zygote to gamete. This holds even if we assume a low number of premeiotic cell divisions (approximately 40) as witnessed inArabidopsis. A low mitotic rate associated with long tracts is also seen in yeast, suggesting generality of results. For species with many mitoses between each meiotic event, mitotic gene conversion should not be overlooked.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

AbstractThe molecular machinery and chromosome structures carrying out meiosis are frequently conserved from yeast to mammals. However, signals initiating meiosis appear divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA) and its target Stra8 have been shown to be necessary but not sufficient to induce meiotic initiation in mammalian germ cells. Here, we use primary culture of mouse undifferentiated spermatogonia without the support of gonadal somatic cells to show that nutrient restriction in combination with RA is sufficient to induce Stra8- and Spo11-dependent meiotic gene and chromosome programs that recapitulate the transcriptomic and cytologic features of in vivo meiosis. We demonstrate that neither nutrient restriction nor RA alone exerts these effects. Moreover, we identify a distinctive network of 11 nutrient restriction-upregulated transcription factor genes, which are associated with early meiosis in vivo and whose expression does not require RA. Our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating key transcription factor genes for the meiotic gene program and provides an in vitro platform for meiotic induction that could facilitate research and haploid gamete production.


2021 ◽  
Author(s):  
Abdul Kader Alabdullah ◽  
Graham Moore ◽  
Azahara C. Martín

SummaryAlthough most flowering plants are polyploid, little is known of how the meiotic process evolved to stabilise and preserve polyploid fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and subsequently diverged. This 5B meiotic gene copy (TaZIP4-B2) was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these stabilising effects on meiosis could be important for the preservation of wheat polyploid fertility.A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting.Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number resulted from pollination with less viable pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis.These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change.


2020 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

Abstract From yeasts to mammals, the molecular machinery and chromosome structures carrying out meiosis are frequently conserved. However, the signal to initiate meiosis appears divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA), a chordate morphogen, and its target, Stra8, are necessary but not sufficient to induce meiotic initiation in mammalian germ cells. Here, by using a combination of genetic, transcriptomic, cytologic approaches in mouse primary spermatogonial culture without the support of gonadal somatic cells, we show that nutrient restriction is both necessary and sufficient to robustly induce Spo11-dependent meiotic DNA double strand breaks (DSBs) and Stra8-dependent meiotic gene programs with RA, recapitulating those of early meiosis in vivo. Moreover, distinct network of 11 nutrient restriction-upregulated transcription factor genes was identified, whose expression does not require RA and is associated with early meiosis in vivo. Thus, our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating key transcriptional factors for meiotic gene programs, and provides an in vitro platform to recapitulate meiotic initiation that will facilitate research and haploid gamete production.


2020 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

ABSTRACTFrom yeasts to mammals, the molecular machinery and chromosome structures carrying out meiosis are frequently conserved. However, the signal to initiate meiosis appears divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA), a chordate morphogen, is necessary but not sufficient to induce meiotic initiation in mammalian germ cells via its target, Stra8. Here, using cultured mouse male germline stem cells without the support of gonadal somatic cells, we show that nutrient restriction in combination with RA robustly induces Spo11-dependent meiotic DNA double strand breaks (DSBs) and Stra8-dependent meiotic gene programs recapitulating those of early meiosis in vivo. Moreover, a distinct network of 11 nutrient restriction-upregulated transcription factor genes was identified, whose expression does not require RA and is associated with early meiosis in vivo. Thus, our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating transcriptional factors for meiotic gene programs, and provides an in vitro platform to derive haploid gametes in culture.One Sentence Summarynutrient restriction synergizes with retinoic acid to induce mammalian meiotic initiation


2020 ◽  
Vol 133 (12) ◽  
pp. jcs242701
Author(s):  
Mei Wang ◽  
Luping Yu ◽  
Shu Wang ◽  
Fan Yang ◽  
Min Wang ◽  
...  

Author(s):  
Natalia Felipe-Medina ◽  
Sandrine Caburet ◽  
Fernando Sánchez-Sáez ◽  
Yazmine B. Condezo ◽  
Dirk de Rooij ◽  
...  

AbstractPrimary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with 3 cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse, compared to a new HSF2BP knock-out mouse showed that it behaves as a hypomorphic allele. HSF2BP-S167L females show reduced fertility with small litter sizes. To obtain mechanistic insights, we identified C19ORF57/MIDAP as a strong interactor and stabilizer of HSF2BP by forming a higher-order macromolecular structure involving BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L mutation showed a strongly decreased expression of both MIDAP and HSF2BP at the recombination nodules. Although HSF2BP-S167L does not affect heterodimerization between HSF2BP and MIDAP, it promotes a lower expression of both proteins and a less proficient activity in replacing RPA by the recombinases RAD51/DMC1, thus leading to a lower frequency of cross-overs. Our results provide insights into the molecular mechanism of two novel actors of meiosis underlying non-syndromic ovarian insufficiency.SummaryFelipe-Medina et al. describe a missense variant in the meiotic gene HSF2BP in a consanguineous family with Premature Ovarian Insufficiency, and characterize it as an hypormorphic allele, that in vivo impairs its dimerization with a novel meiotic actor, MIDAP/ C19ORF57, and affect recombination at double-strand DNA breaks.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Kevin R. Pilkiewicz ◽  
Michael L. Mayo
Keyword(s):  

PLoS Genetics ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. e1008598 ◽  
Author(s):  
Yuichi Shichino ◽  
Yoko Otsubo ◽  
Masayuki Yamamoto ◽  
Akira Yamashita

Sign in / Sign up

Export Citation Format

Share Document