scholarly journals An In Vitro Model System Used To Study Adherence and Invasion of Francisella tularensis Live Vaccine Strain in Nonphagocytic Cells

2007 ◽  
Vol 75 (6) ◽  
pp. 3178-3182 ◽  
Author(s):  
Stephen R. Lindemann ◽  
Molly K. McLendon ◽  
Michael A. Apicella ◽  
Bradley D. Jones

ABSTRACT In observing Francisella tularensis interactions with nonphagocytic cell lines in vitro, we noted significant adherence, invasion, and intracellular growth of the bacteria within these cells. F. tularensis live vaccine strain invasion of nonprofessional phagocytic cells is inhibited by cytochalasin D and nocodazole, suggesting that both the actin and microtubule cytoskeletons are important for invasion.

2014 ◽  
Vol 82 (4) ◽  
pp. 1477-1490 ◽  
Author(s):  
Amanda A. Melillo ◽  
Oded Foreman ◽  
Catharine M. Bosio ◽  
Karen L. Elkins

ABSTRACTUpregulation of the transcription factor T-bet is correlated with the strength of protection against secondary challenge with the live vaccine strain (LVS) ofFrancisella tularensis. Thus, to determine if this mediator had direct consequences in immunity to LVS, we examined its role in infection. Despite substantialin vivogamma interferon (IFN-γ) levels, T-bet-knockout (KO) mice infected intradermally (i.d.) or intranasally (i.n.) with LVS succumbed to infection with doses 2 log units less than those required for their wild-type (WT) counterparts, and exhibited significantly increased bacterial burdens in the lung and spleen. Lungs of LVS-infected T-bet-KO mice contained fewer lymphocytes and more neutrophils and interleukin-17 than WT mice. LVS-vaccinated T-bet-KO mice survived lethal LVS intraperitoneal secondary challenge but not high doses of LVS i.n. challenge, independently of the route of vaccination. Immune T lymphocytes from the spleens of i.d. LVS-vaccinated WT or KO mice controlled intracellular bacterial replication in anin vitrococulture system, but cultures with T-bet-KO splenocyte supernatants contained less IFN-γ and increased amounts of tumor necrosis factor alpha. In contrast, immune T-bet-KO lung lymphocytes were greatly impaired in controlling intramacrophage growth of LVS; this functional defect is the likely mechanism underpinning the lack of respiratory protection. Taken together, T-bet is important in host resistance to primary LVS infection and i.n. secondary challenge. Thus, T-bet represents a true, useful correlate for immunity to LVS.


2012 ◽  
Vol 81 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Tyler K. Ulland ◽  
Ann M. Janowski ◽  
Blake W. Buchan ◽  
Matthew Faron ◽  
Suzanne L. Cassel ◽  
...  

Francisella tularensisis a Gram-negative bacterium and the causative agent of the disease tularemia. Escape ofF. tularensisfrom the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1β (IL-1β) and IL-18, which play a crucial role in innate immune responses toF. tularensis. We have identified the5-formyltetrahydrofolate cycloligasegene (FTL_0724) as being important forF. tularensislive vaccine strain (LVS) virulence. Infection of micein vivowith aF. tularensisLVSFTL_0724mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. TheFTL_0724mutant also induced increased inflammasome-dependent IL-1β and IL-18 secretion and cytotoxicity in macrophagesin vitro. In contrast, infection of macrophages with aF. tularensisLVSrluD pseudouridine synthase(FTL_0699) mutant resulted in diminished IL-1β and IL-18 secretion from macrophagesin vitrocompared to infection of macrophages with wild-type LVS. In addition, theFTL_0699mutant was not attenuatedin vivo. These findings further illustrate thatF. tularensisLVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogenin vivo.


2008 ◽  
Vol 76 (8) ◽  
pp. 3502-3510 ◽  
Author(s):  
Linda Bönquist ◽  
Helena Lindgren ◽  
Igor Golovliov ◽  
Tina Guina ◽  
Anders Sjöstedt

ABSTRACT The Francisella tularensis live vaccine strain (LVS), in contrast to its iglC mutant, replicates in the cytoplasm of macrophages. We studied the outcome of infection of the murine macrophagelike cell line J774A.1 with LVS and with iglC, iglD, and mglA mutants, the latter of which is deficient in a global regulator. Compared to LVS, all of the mutants showed impaired intracellular replication up to 72 h, and the number of the mglA mutant bacteria even decreased. Colocalization with LAMP-1 was significantly increased for all mutants compared to LVS, indicating an impaired ability to escape into the cytoplasm. A lysosomal acidity-dependent dye accumulated in approximately 40% of the vacuoles containing mutant bacteria but not at all in vacuoles containing LVS. Preactivation of the macrophages with gamma interferon inhibited the intracellular growth of all strains and significantly increased acidification of phagosomes containing the mutants, but it only slightly increased the LAMP-1 colocalization. The intracellular replication and phagosomal escape of the iglC and iglD mutants were restored by complementation in trans. In conclusion, the IglC, IglD, and MglA proteins each directly or indirectly critically contribute to the virulence of F. tularensis LVS, including its intracellular replication, cytoplasmic escape, and inhibition of acidification of the phagosomes.


2006 ◽  
Vol 74 (8) ◽  
pp. 4452-4461 ◽  
Author(s):  
Roger Pechous ◽  
Jean Celli ◽  
Renee Penoske ◽  
Stanley F. Hayes ◽  
Dara W. Frank ◽  
...  

ABSTRACT Francisella tularensis is a facultative intracellular pathogen and is the etiological agent of tularemia. It is capable of escaping from the phagosome, replicating to high numbers in the cytosol, and inducing apoptosis in macrophages of a variety of hosts. F. tularensis has received significant attention recently due to its potential use as a bioweapon. Currently, there is no licensed vaccine against F. tularensis, although a partially protective live vaccine strain (LVS) that is attenuated in humans but remains fully virulent for mice was previously developed. An F. tularensis LVS mutant deleted in the purMCD purine biosynthetic locus was constructed and partially characterized by using an allelic exchange strategy. The F. tularensis LVS ΔpurMCD mutant was auxotrophic for purines when grown in defined medium and exhibited significant attenuation in virulence when assayed in murine macrophages in vitro or in BALB/c mice. Growth and virulence defects were complemented by the addition of the purine precursor hypoxanthine or by introduction of purMCDN in trans. The F. tularensis LVS ΔpurMCD mutant escaped from the phagosome but failed to replicate in the cytosol or induce apoptotic and cytopathic responses in infected cells. Importantly, mice vaccinated with a low dose of the F. tularensis LVSΔ purMCD mutant were fully protected against subsequent lethal challenge with the LVS parental strain. Collectively, these results suggest that F. tularensis mutants deleted in the purMCD biosynthetic locus exhibit characteristics that may warrant further investigation of their use as potential live vaccine candidates.


2014 ◽  
Vol 82 (5) ◽  
pp. 2068-2078 ◽  
Author(s):  
Christopher R. Doyle ◽  
Ji-An Pan ◽  
Patricio Mena ◽  
Wei-Xing Zong ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of theF. tularensislive vaccine strain (LVS) and demonstrated that a ΔtolCmutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required forF. tularensisto preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolCmutant. These findings support a model wherein the immunomodulatory capacity ofF. tularensisrelies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolCLVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolCmutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection byF. tularensisand highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.


2005 ◽  
Vol 73 (4) ◽  
pp. 2306-2311 ◽  
Author(s):  
Nathalie S. Duckett ◽  
Sofia Olmos ◽  
Douglas M. Durrant ◽  
Dennis W. Metzger

ABSTRACT Francisella tularensis is a gram-negative intracellular bacterium that can induce lethal respiratory infection in humans and rodents. However, little is known about the role of innate or adaptive immunity in protection from respiratory tularemia. In the present study, the role of interleukin-12 (IL-12) in inducing protective immunity in the lungs against intranasal infection of mice with the live vaccine strain (LVS) of F. tularensis was investigated. It was found that gamma interferon (IFN-γ) and IL-12 were strictly required for protection, since mice deficient in IFN-γ, IL-12 p35, or IL-12 p40 all succumbed to LVS doses that were sublethal for wild-type mice. Furthermore, exogenous IL-12 treatment 24 h before intranasal infection with a lethal dose of LVS (10,000 CFU) significantly decreased bacterial loads in the lungs, livers, and spleens of wild-type BALB/c and C57BL/6 mice and allowed the animals to survive infection; such protection was not observed in IFN-γ-deficient mice. The resistance induced by IL-12 to LVS infection was still observed in NK cell-deficient beige mice but not in CD8−/− mice. These results demonstrate that exogenous IL-12 delivered intranasally can prevent respiratory tularemia through a mechanism that is at least partially dependent upon the expression of IFN-γ and CD8 T cells.


Sign in / Sign up

Export Citation Format

Share Document