scholarly journals Antibody Recognition of Plasmodium falciparum Erythrocyte Surface Antigens in Kenya: Evidence for Rare and Prevalent Variants

1999 ◽  
Vol 67 (2) ◽  
pp. 733-739 ◽  
Author(s):  
Peter C. Bull ◽  
Brett S. Lowe ◽  
Moses Kortok ◽  
Kevin Marsh

ABSTRACT Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the name given to a family of parasite proteins that are inserted into the infected erythrocyte surface. Studies using agglutination assays have shown previously that PfEMP1 epitopes are extremely diverse. In a study in Kenya, 21 parasite isolates, including nine from children with severe malaria, were tested for agglutination by 33 pairs of plasma, 21 of which were from the corresponding children. Each plasma pair consisted of a sample taken at the time of disease (acute) and one taken 3 weeks later (convalescent). In agreement with previous studies, infection was generally followed by the induction of antibodies specific to the homologous parasite isolate. In addition however, the results show that (i) some isolates were agglutinated very frequently by heterologous plasma; (ii) unexpectedly, these frequently agglutinated isolates tended to be from individuals with severe malaria; (iii) an inverse relationship existed between the agglutination frequency of each parasite isolate in heterologous plasma and the agglutinating antibody repertoire of the homologous child at the time of disease; and (iv) A 3-month-old child apparently still carrying maternal antibodies was infected by a rarely agglutinated isolate. This child’s plasma agglutinated all isolates at the time of disease, apart from the homologous isolate. These results support the idea that preexisting anti-PfEMP1 antibodies can select the variants that are expressed during a new infection and may suggest the existence of a dominant subset of PfEMP1 variants.

2000 ◽  
Vol 71 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Haider A. Giha ◽  
Trine Staalsoe ◽  
Daniel Dodoo ◽  
Cally Roper ◽  
Gwiria M.H. Satti ◽  
...  

1989 ◽  
Vol 9 (8) ◽  
pp. 3584-3587
Author(s):  
R Cappai ◽  
M R van Schravendijk ◽  
R F Anders ◽  
M G Peterson ◽  
L M Thomas ◽  
...  

We show here that the Plasmodium falciparum isolate FCR3 does not express the ring-infected erythrocyte surface antigen (RESA). This is because the 5' end of the RESA gene has been inverted and partly deleted and a telomere has been added to it. We propose a model to explain these events.


1990 ◽  
Vol 10 (6) ◽  
pp. 3243-3246
Author(s):  
L G Pologe ◽  
D de Bruin ◽  
J V Ravetch

Ring-infected erythrocyte surface antigen-negative isolates of Plasmodium falciparum demonstrate a complex DNA rearrangement with inversion of 5' coding sequences, deletion of upstream and flanking sequences, and healing of the truncated chromosome by telomere addition. An inversion intermediate that results in the telomeric gene structure for RESA has been identified in the pathway. This inversion creates a mitotically stable substrate for the sequence-specific addition of telomere repeats at the deletion breakpoint.


1990 ◽  
Vol 10 (6) ◽  
pp. 3243-3246 ◽  
Author(s):  
L G Pologe ◽  
D de Bruin ◽  
J V Ravetch

Ring-infected erythrocyte surface antigen-negative isolates of Plasmodium falciparum demonstrate a complex DNA rearrangement with inversion of 5' coding sequences, deletion of upstream and flanking sequences, and healing of the truncated chromosome by telomere addition. An inversion intermediate that results in the telomeric gene structure for RESA has been identified in the pathway. This inversion creates a mitotically stable substrate for the sequence-specific addition of telomere repeats at the deletion breakpoint.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 1036-1042 ◽  
Author(s):  
Xinhong Pei ◽  
Xinhua Guo ◽  
Ross Coppel ◽  
Souvik Bhattacharjee ◽  
Kasturi Haldar ◽  
...  

AbstractThe malaria parasite Plasmodium falciparum releases the ring-infected erythrocyte surface antigen (RESA) inside the red cell on entry. The protein migrates to the host cell membrane, where it binds to spectrin, but neither the nature of the interaction nor its functional consequences have previously been defined. Here, we identify the binding motifs involved in the interaction and describe a possible function. We have found that spectrin binds to a 108–amino acid fragment (residues 663-770) of RESA, and that this RESA fragment binds to repeat 16 of the β-chain, close to the labile dimer-dimer self-association site. We further show that the RESA fragment stabilizes the spectrin tetramer against dissociation into its constituent dimers, both in situ and in solution. This is accompanied by enhanced resistance of the cell to both mechanical and thermal degradation. Resealed erythrocytes containing RESA663-770 display resistance to invasion by merozoites of P falciparum. We infer that the evolutionary advantage of RESA to the parasite lies in its ability to prevent invasion of cells that are already host to a developing parasite, as well as possibly to guard the cell against thermal damage at the elevated body temperatures prevailing in febrile crises.


Sign in / Sign up

Export Citation Format

Share Document