scholarly journals Alkyl Hydroperoxide Reductase Repair by Helicobacter pylori Methionine Sulfoxide Reductase

2013 ◽  
Vol 195 (23) ◽  
pp. 5396-5401 ◽  
Author(s):  
S. L. Benoit ◽  
K. Bayyareddy ◽  
M. Mahawar ◽  
J. S. Sharp ◽  
R. J. Maier
2005 ◽  
Vol 1753 (2) ◽  
pp. 240-246 ◽  
Author(s):  
Elena Papinutto ◽  
Henry J. Windle ◽  
Laura Cendron ◽  
Roberto Battistutta ◽  
Dermot Kelleher ◽  
...  

2018 ◽  
Vol 200 (17) ◽  
Author(s):  
Alan A. Schmalstig ◽  
Stéphane L. Benoit ◽  
Sandeep K. Misra ◽  
Joshua S. Sharp ◽  
Robert J. Maier

ABSTRACTThe well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protectHelicobacter pyloriagainst the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureABdeletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protectH. pyloriagainst oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purifiedH. pyloriurease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCEChronicHelicobacter pyloriinfection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid,H. pylorimust survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge ofH. pylorisurvival mechanisms.


Helicobacter ◽  
2001 ◽  
Vol 6 (4) ◽  
pp. 274-282 ◽  
Author(s):  
Jing Yan ◽  
Toshiko Kumagai ◽  
Makoto Ohnishi ◽  
Ichiro Ueno ◽  
Hiroyoshi Ota

Vaccine ◽  
2012 ◽  
Vol 30 (26) ◽  
pp. 3876-3884 ◽  
Author(s):  
Avril A. O’Riordan ◽  
Veronica Athie Morales ◽  
Linda Mulligan ◽  
Nazia Faheem ◽  
Henry J. Windle ◽  
...  

2013 ◽  
Vol 450 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Lisa G. Kuhns ◽  
Manish Mahawar ◽  
Joshua S. Sharp ◽  
Stéphane Benoit ◽  
Robert J. Maier

The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions.


2006 ◽  
Vol 188 (16) ◽  
pp. 5839-5850 ◽  
Author(s):  
Praveen Alamuri ◽  
Robert J. Maier

ABSTRACT The reductive repair of oxidized methionine residues performed by methionine sulfoxide reductase is important for the gastric pathogen Helicobacter pylori to maintain persistent stomach colonization. Methionine-containing proteins that are targeted for repair by Msr were identified from whole-cell extracts (after cells were exposed to O2 stress) by using a coimmunoprecipitation approach. Proteins identified as Msr-interacting included catalase, GroEL, thioredoxin-1 (Trx1), and site-specific recombinase; with one exception (Trx1, the reductant for Msr) all these proteins have approximately twofold higher methionine (Met) content than other proteins. These Met-rich proteins were purified and were shown to individually form a cross-linked adduct with Msr. Catalase-specific activity in an msr strain was one-half that of the parent strain; this difference was only observed under oxidative stress conditions, and the activity was restored to nearly wild-type levels by adding Msr plus dithiothreitol to msr strain extracts. In agreement with the cross-linking study, pure Msr used Trx1 but not Trx2 as a reductant. Comparative structure modeling classified the H. pylori Msr in class II within the MsrB family, like the Neisseria enzymes. Pure H. pylori enzyme reduced only the R isomer of methyl p-tolyl-sulfoxide with an apparent Km of 4.1 mM for the substrate. Stress conditions (peroxide, peroxynitrite, and iron starvation) all caused approximately 3- to 3.5-fold transcriptional up-regulation of msr. Neither the O2 level during growth nor the use of background regulatory mutants had a significant effect on msr transcription. Late log and stationary phase cultures had the highest Msr protein levels and specific activity.


Sign in / Sign up

Export Citation Format

Share Document