scholarly journals A Cellulose Synthase-Like Protein Involved in Hyphal Tip Growth and Morphological Differentiation in Streptomyces

2008 ◽  
Vol 190 (14) ◽  
pp. 4971-4978 ◽  
Author(s):  
Hongbin Xu ◽  
Keith F. Chater ◽  
Zixin Deng ◽  
Meifeng Tao

ABSTRACT Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing β-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslASc) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslASc replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslASc. cslASc was constitutively transcribed, and an enhanced green fluorescent protein-CslASc fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslASc interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslASc membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development.

2020 ◽  
Vol 16 (1) ◽  
pp. 58-63
Author(s):  
Amrutha Vijayakumar ◽  
Ajith Madhavan ◽  
Chinchu Bose ◽  
Pandurangan Nanjan ◽  
Sindhu S. Kokkal ◽  
...  

Background: Chitin is the main component of fungal, protozoan and helminth cell wall. They help to maintain the structural and functional characteristics of these organisms. The chitin wall is dynamic and is repaired, rearranged and synthesized as the cells develop. Active synthesis can be noticed during cytokinesis, laying of primary septum, maintenance of lateral cell wall integrity and hyphal tip growth. Chitin synthesis involves coordinated action of two enzymes namely, chitin synthase (that lays new cell wall) and chitinase (that removes the older ones). Since chitin synthase is conserved in different eukaryotic microorganisms that can be a ‘soft target’ for inhibition with small molecules. When chitin synthase is inhibited, it leads to the loss of viability of cells owing to the self- disruption of the cell wall by existing chitinase. Methods: In the described study, small molecules from plant sources were screened for their ability to interfere with hyphal tip growth, by employing Hyphal Tip Burst assay (HTB). Aspergillus niger was used as the model organism. The specific role of these small molecules in interfering with chitin synthesis was established with an in-vitro method. The enzyme required was isolated from Aspergillus niger and its activity was deduced through a novel method involving non-radioactively labelled substrate. The activity of the potential lead molecules were also checked against Candida albicans and Caenorhabditis elegans. The latter was adopted as a surrogate for the pathogenic helminths as it shares similarity with regard to cell wall structure and biochemistry. Moreover, it is widely studied and the methodologies are well established. Results: Out of the 11 compounds and extracts screened, 8 were found to be prospective. They were also found to be effective against Candida albicans and Caenorhabditis elegans. Conclusion: Purified Methyl Ethyl Ketone (MEK) Fraction1 (F1) of Coconut (Cocos nucifera) Shell Extract (COSE) was found to be more effective against Candida albicans with an IC50 value of 3.04 μg/mL and on L4 stage of Caenorhabditis elegans with an IC50 of 77.8 μg/mL.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
K. E. P. Sugden ◽  
M. R. Evans ◽  
W. C. K. Poon ◽  
N. D. Read

2004 ◽  
Vol 10 (S02) ◽  
pp. 1554-1555
Author(s):  
Maho Uchida ◽  
Solomon Bartnicki-García ◽  
Robert W. Roberson

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


1972 ◽  
Vol 50 (12) ◽  
pp. 2455-2462 ◽  
Author(s):  
Daniela da Riva Ricci ◽  
Bryce Kendrick

Starting from simple morphological considerations and a hypothesis involving 'unset' and 'set' wall, a mathematical model simulating the growth of the hyphal tip is derived, and the results displayed by plotter.


2011 ◽  
Vol 166 (3) ◽  
pp. 137-145 ◽  
Author(s):  
Sigyn Jorde ◽  
Andrea Walther ◽  
Jürgen Wendland

1999 ◽  
Vol 28 (2) ◽  
pp. 79-93 ◽  
Author(s):  
I.Brent Heath ◽  
Gero Steinberg

Sign in / Sign up

Export Citation Format

Share Document