scholarly journals Cell wall metabolism in Bacillus subtilis subsp. niger: accumulation of wall polymers in the supernatant of chemostat cultures.

1981 ◽  
Vol 146 (3) ◽  
pp. 877-884 ◽  
Author(s):  
W de Boer ◽  
F J Kruyssen ◽  
J T Wouters
2009 ◽  
Vol 74 (5) ◽  
pp. 543-548 ◽  
Author(s):  
A. S. Shashkov ◽  
N. V. Potekhina ◽  
S. N. Senchenkova ◽  
E. B. Kudryashova

2015 ◽  
Vol 197 (8) ◽  
pp. 1492-1506 ◽  
Author(s):  
Letal I. Salzberg ◽  
Eric Botella ◽  
Karsten Hokamp ◽  
Haike Antelmann ◽  
Sandra Maaß ◽  
...  

ABSTRACTThe PhoPR two-component signal transduction system controls one of three responses activated byBacillus subtilisto adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, inB. subtilisand some otherFirmicutesbacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB,yqgS,wapA, anddacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation ofphoPRexpression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3′ end of thephoPRoperon.IMPORTANCEThe PhoPR two-component system controls one of three responses mounted byB. subtilisto adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB,yqgS,wapA, anddacA), revealing that PhoPR has an extended involvement in cell wall metabolism. Second, amplification of the PHO response must occur by a novel mechanism since positive autoregulation ofphoPRexpression requires PhoP∼P binding to the 3′ end of the operon.


1979 ◽  
Vol 45 (2) ◽  
pp. 315-317
Author(s):  
W. R. de Boer ◽  
F. J. Kruyssen ◽  
J. T. M. Wouters

1981 ◽  
Vol 145 (1) ◽  
pp. 50-60 ◽  
Author(s):  
W R De Boer ◽  
F J Kruyssen ◽  
J T Wouters

Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2470-2484 ◽  
Author(s):  
Eric Botella ◽  
Sebastian Hübner ◽  
Karsten Hokamp ◽  
Annette Hansen ◽  
Paola Bisicchia ◽  
...  

The high phosphate content of Bacillus subtilis cell walls dictates that cell wall metabolism is an important feature of the PhoPR-mediated phosphate limitation response. Here we report the expression profiles of cell-envelope-associated and PhoPR regulon genes, determined by live cell array and transcriptome analysis, in exponentially growing and phosphate-limited B. subtilis cells. Control by the WalRK two-component system confers a unique expression profile and high level of promoter activity on the genes of its regulon with yocH and cwlO expression differing both qualitatively and quantitatively from all other autolysin-encoding genes examined. The activity of the PhoPR two-component system is restricted to the phosphate-limited state, being rapidly induced in response to the cognate stimulus, and can be sustained for an extended phosphate limitation period. Constituent promoters of the PhoPR regulon show heterogeneous induction profiles and very high promoter activities. Phosphate-limited cells also show elevated expression of the actin-like protein MreBH and reduced expression of the WapA cell wall protein and WprA cell wall protease indicating that cell wall metabolism in this state is distinct from that of exponentially growing and stationary-phase cells. The PhoPR response is very rapidly deactivated upon removal of the phosphate limitation stimulus with concomitant increased expression of cell wall metabolic genes. Moreover expression of genes encoding enzymes involved in sulphur metabolism is significantly altered in the phosphate-limited state with distinct perturbations being observed in wild-type 168 and AH024 (ΔphoPR) cells.


2018 ◽  
Vol 28 (10) ◽  
pp. 1760-1765
Author(s):  
Seonjoo Ahn ◽  
Sangmi Jun ◽  
Hyun-Joo Ro ◽  
Ju Han Kim ◽  
Seil Kim

Sign in / Sign up

Export Citation Format

Share Document