wall teichoic acid
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 46)

H-INDEX

45
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Lisanne de Vor ◽  
Bruce van Dijk ◽  
Kok van Kessel ◽  
Jeffrey S Kavanaugh ◽  
Carla de Haas ◽  
...  

Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Pan ◽  
Jing Guan ◽  
Yujie Li ◽  
Baolin Sun

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pandemics primarily consisting of skin and soft tissue infections. However, the underlying pathomechanisms of the bacterium are yet to fully understood. The present study identifies LcpB protein, which belongs to the LytR-A-Psr (LCP) family, is crucial for cell wall synthesis and virulence in S. aureus. The findings revealed that LcpB is a pyrophosphatase responsible for wall teichoic acid synthesis. The results also showed that LcpB regulates enzyme activity through specific key arginine sites in its LCP domain. Furthermore, knockout of lcpB in the CA-MRSA isolate ST59 resulted in enhanced hemolytic activity, enlarged of abscesses, and increased leukocyte infiltration. Meanwhile, we also found that LcpB regulates virulence in agr-independent manner and the key sites for pyrophosphatase of LcpB play critical roles in regulating the virulence. In addition, the results showed that the role of LcpB was different between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). This study therefore highlights the dual role of LcpB in cell wall synthesis and regulation of virulence. These insights on the underlying molecular mechanisms can thus guide the development of novel anti-infective strategies.


2021 ◽  
pp. 101464
Author(s):  
Orlando E. Martinez ◽  
Brendan J. Mahoney ◽  
Andrew K. Goring ◽  
Sung-Wook Yi ◽  
Denise P. Tran ◽  
...  

2021 ◽  
pp. 108499
Author(s):  
Barbara Bellich ◽  
Nika Janež ◽  
Meta Sterniša ◽  
Anja Klančnik ◽  
Neil Ravenscroft ◽  
...  

2021 ◽  
Author(s):  
Daniel Pensinger ◽  
Kimberly V Gutierrez ◽  
Hans B Smith ◽  
William J.B. Vincent ◽  
David M Stevenson ◽  
...  

The cytosol of eukaryotic host cells is an intrinsically hostile environment for bacteria. Understanding how cytosolic pathogens adapt to and survive in the cytosol is critical to developing novel therapeutic interventions for these pathogens. The cytosolic pathogen Listeria monocytogenes requires glmR (previously known as yvcK), a gene of unknown function, for resistance to cell wall stress, cytosolic survival, inflammasome avoidance and ultimately virulence in vivo. A genetic suppressor screen revealed that blocking utilization of UDP-GlcNAc by a non-essential wall teichoic acid decoration pathway restored resistance to cell wall stress and partially restored virulence of ΔglmR mutants. In parallel, metabolomics revealed that ΔglmR mutants are impaired in the production of UDP-GlcNAc, an essential peptidoglycan and wall teichoic acid (WTA) precursor. We next demonstrated that purified GlmR can directly catalyze the synthesis of UDP-GlcNAc from GlcNAc-1P and UTP, suggesting that it is an accessory uridyltransferase. Biochemical analysis of GlmR orthologues suggest that uridyltransferase activity is conserved. Finally, mutational analysis resulting in a GlmR mutant with impaired catalytic activity demonstrated that uridyltransferase activity was essential to facilitate cell wall stress responses and virulence in vivo. Taken together these studies indicate that GlmR is an evolutionary conserved accessory uridyltransferase required for cytosolic survival and virulence of L. monocytogenes.


2021 ◽  
Author(s):  
Lauren R. Hammond ◽  
Sebastian J. Khan ◽  
Michael D. Sacco ◽  
Catherine Spanoudis ◽  
Abigail Hough ◽  
...  

Bacterial cell division is a complex and highly regulated process requiring the coordination of many different proteins. Despite substantial work in model organisms, our understanding of the systems regulating cell division in non-canonical organisms, including critical human pathogens, is far from complete. One such organism is Staphylococcus aureus, a spherical bacterium that lacks known cell division regulatory proteins. Recent studies on GpsB, a protein conserved within the Firmicutes phylum, have provided insight into cell division regulation in S. aureus and other related organisms. It has been revealed that GpsB coordinates cell division and cell wall synthesis in multiple species by interacting with Penicillin Binding Proteins (PBPs) and other partners. In S. aureus, we have previously shown that GpsB directly regulates FtsZ polymerization. In this study, using Bacillus subtilis as a tool, we isolated intragenic and extragenic spontaneous suppressor mutants that abrogate the lethality of S. aureus GpsB overproduction in B. subtilis. Through characterization of these mutants, we identified several key residues important for the function of GpsB. Furthermore, we discovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis in S. aureus. Specifically, we show that GpsB directly interacts with the wall teichoic acid export protein TarG using a bacterial two-hybrid analysis. We also identified a three-residue motif in GpsB that is crucial for this interaction. Based on the analysis of the localization of TagG in B. subtilis and its homolog TarG in S. aureus, it appears that WTA machinery is a part of the divisome complex. As such, we show additional evidence to the growing body of work that suggests that along with peptidoglycan synthesis, WTA biosynthesis and export may take place at the site of cell division. Taken together, this research illustrates how GpsB performs an essential function in S. aureus by directly linking the tightly regulated cell cycle processes of cell division and WTA-mediated cell surface decoration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marc Burian ◽  
Johanna Plange ◽  
Laurenz Schmitt ◽  
Anke Kaschke ◽  
Yvonne Marquardt ◽  
...  

The healthy human epidermis provides physical protection and is impenetrable for pathogenic microbes. Nevertheless, commensal and pathogen bacteria such as Staphylococcus aureus are able to colonize the skin surface, which may subsequently lead to infection. To identify and characterize regulatory elements facilitating adaptation of S. aureus to the human skin environment we used ex vivo tissue explants and quantified S. aureus gene transcription during co-culture. This analysis provided evidence for a significant downregulation of the global virulence regulator agr upon initial contact with skin, regardless of the growth phase of S. aureus prior to co-culture. In contrast, the alternative sigma factor B (sigB) and the antimicrobial peptide-sensing system (graRS) were expressed during early colonization. Consistently, sigB target genes such as the clumping factor A (clfA) and fibrinogen and fibronectin binding protein A (fnbA) were strongly upregulated upon skin contact. At later timepoints of the adhesion process, wall teichoic acid (WTA) synthesis was induced. Besides the expression of adhesive molecules, transcription of molecules involved in immune evasion were increased during late colonization (staphylococcal complement inhibitor and staphylokinase). Similar to nasal colonization, enzymes involved in cell wall metabolism (sceD and atlA) were highly transcribed. Finally, we detected a strong expression of proteases from all three catalytic classes during the entire colonization process. Taken together, we here present an ex vivo skin colonization model that allows the detailed characterization of the bacterial adaptation to the skin environment.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1557
Author(s):  
Cassandra R. Stanton ◽  
Daniel T. F. Rice ◽  
Michael Beer ◽  
Steven Batinovic ◽  
Steve Petrovski

Bacillus is a highly diverse genus containing over 200 species that can be problematic in both industrial and medical settings. This is mainly attributed to Bacillus sp. being intrinsically resistant to an array of antimicrobial compounds, hence alternative treatment options are needed. In this study, two bacteriophages, PumA1 and PumA2 were isolated and characterized. Genome nucleotide analysis identified the two phages as novel at the DNA sequence level but contained proteins similar to phi29 and other related phages. Whole genome phylogenetic investigation of 34 phi29-like phages resulted in the formation of seven clusters that aligned with recent ICTV classifications. PumA1 and PumA2 share high genetic mosaicism and form a genus with another phage named WhyPhy, more recently isolated from the United States of America. The three phages within this cluster are the only candidates to infect B. pumilus. Sequence analysis of B. pumilus phage resistant mutants revealed that PumA1 and PumA2 require polymerized and peptidoglycan bound wall teichoic acid (WTA) for their infection. Bacteriophage classification is continuously evolving with the increasing phages’ sequences in public databases. Understanding phage evolution by utilizing a combination of phylogenetic approaches provides invaluable information as phages become legitimate alternatives in both human health and industrial processes.


2021 ◽  
Author(s):  
Eric. T. Sumrall ◽  
Stephan R. Schneider ◽  
Samy Boulos ◽  
Martin J. Loessner ◽  
Yang Shen

Listeria ivanovii ( Liv ) is an intracellular Gram-positive pathogen that primarily infects ruminants, but also occasionally causes enteric infections in humans. Albeit rare, this bacterium possesses the capacity to cross the intestinal epithelium of humans, similar to its more frequently pathogenic cousin, Listeria monocytogenes ( Lmo ). Recent studies in Lmo have shown that specific glycosyl modifications on the cell wall-associated glycopolymers (termed wall-teichoic acid, or WTA) of Lmo are responsible for bacteriophage adsorption and retention of the major virulence factor, Internalin B (InlB). However, the relationship between InlB and WTA in Liv remains unclear. Here, we report the identification of the unique gene, liv1070 that encodes a putative glucosyltransferase in the polycistronic WTA gene cluster of the Liv WSLC 3009 genome. We found that in-frame deletion of liv1070 led to loss of the glucose substitution on WTA, as revealed by UPLC-MS analysis. Interestingly, the glucose-deficient mutant became resistant to phage B025 infection due to an inability of the phage to adsorb to the bacterial surface, a binding process mediated by the receptor-binding protein B025_Gp17. As expected, deletion of liv1070 led to loss of InlB retention to the bacterial cell wall, which corresponded to a drastic decrease in cellular invasion. Genetic complementation of liv1070 restored the characteristic phenotypes, including glucose decoration, phage adsorption, and cellular invasion. Taken together, our data demonstrate that an interplay between phage, bacteria, and host cells also exists in Listeria ivanovii , suggesting the trade-off between phage resistance and virulence attenuation may be a general feature in the Listeria genus. Importance Listeria ivanovii is a Gram-positive bacterial pathogen known to cause enteric infection in rodents and ruminants, and occasionally in immunocompromised humans. Recent investigations revealed that, in its better-known cousin Listeria monocytogenes , strains develop resistance to bacteriophage attack due to loss of glycosylated surface receptors, which subsequently resulting in disconnection of one of the bacterium's major virulence factors, InlB. However, the situation in L. ivanovii remains unclear. Here, we show that L. ivanovii acquires phage resistance following deletion of a unique glycosyltransferase. This deletion also leads to dysfunction of InlB, making the resulting strain unable to invade host cells. Overall, this study suggests that the interplay between phage, bacteria and the host may be a feature common to the Listeria genus.


Sign in / Sign up

Export Citation Format

Share Document