scholarly journals Isolation and characterization of outer membrane permeability mutants in Escherichia coli K-12.

1985 ◽  
Vol 161 (1) ◽  
pp. 361-367 ◽  
Author(s):  
S A Benson ◽  
A Decloux
Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 491-501 ◽  
Author(s):  
B A Sampson ◽  
R Misra ◽  
S A Benson

Abstract Using a genetic selection for mutations which allow large maltodextrins to cross the outer membrane of Escherichia coli in the absence of the LamB maltoporin, we have obtained and characterized two mutations that define a new locus of E. coli. We have designated this locus imp for increased membrane permeability. Mapping studies show that the imp gene resides at approximately 1.2 min on the E. coli chromosome. The mutations alter the permeability of the outer membrane resulting in increased sensitivity to detergents, antibiotics and dyes. The mutations are nonreverting and codominant. Genetic analysis of the mutations suggest that the imp gene is an essential gene. We describe a general cloning strategy that can be used to clone both dominant and recessive alleles. Using this technique, we have cloned the wild-type and mutant imp alleles onto a low copy number plasmid.


1999 ◽  
Vol 43 (6) ◽  
pp. 1459-1462 ◽  
Author(s):  
Martti Vaara ◽  
Marjatta Nurminen

ABSTRACT The tight packing of six fatty acids in the lipid A constituent of lipopolysaccharide (LPS) has been proposed to contribute to the unusually low permeability of the outer membrane of gram-negative enteric bacteria to hydrophobic antibiotics. Here it is shown that theEscherichia coli msbB mutant, which elaborates defective, penta-acylated lipid A, is practically as resistant to a representative set of hydrophobic solutes (rifampin, fusidic acid, erythromycin, clindamycin, and azithromycin) as the parent-type control strain. The susceptibility index, i.e., the approximate ratio between the MIC for the msbB mutant and that for the parent-type control, was maximally 2.7-fold. In comparison, the rfa mutant defective in the deep core oligosaccharide part of LPS displayed indices ranging from 20 to 64. The lpxA and lpxD lipid A mutants had indices higher than 512. Furthermore, the msbBmutant was resistant to glycopeptides (vancomycin, teicoplanin), whereas the rfa, lpxA, and lpxDmutants were susceptible. The msbB htrB double mutant, which elaborates even-more-defective, partially tetra-acylated lipid A, was still less susceptible than the rfa mutant. These findings indicate that hexa-acylated lipid A is not a prerequisite for the normal function of the outer membrane permeability barrier.


Sign in / Sign up

Export Citation Format

Share Document