scholarly journals Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium.

1988 ◽  
Vol 170 (12) ◽  
pp. 5778-5784 ◽  
Author(s):  
T Nozawa ◽  
Y Maruyama
1998 ◽  
Vol 170 (2) ◽  
pp. 120-131 ◽  
Author(s):  
J. Heider ◽  
Matthias Boll ◽  
Klaus Breese ◽  
Sabine Breinig ◽  
Christa Ebenau-Jehle ◽  
...  

2008 ◽  
Vol 74 (8) ◽  
pp. 2267-2274 ◽  
Author(s):  
Kathleen Trautwein ◽  
Simon Kühner ◽  
Lars Wöhlbrand ◽  
Thomas Halder ◽  
Kenny Kuchta ◽  
...  

ABSTRACT The denitrifying betaproteobacterium “Aromatoleum aromaticum” strain EbN1 degrades several aromatic compounds, including ethylbenzene, toluene, p-cresol, and phenol, under anoxic conditions. The hydrophobicity of these aromatic solvents determines their toxic properties. Here, we investigated the response of strain EbN1 to aromatic substrates at semi-inhibitory (about 50% growth inhibition) concentrations under two different conditions: first, during anaerobic growth with ethylbenzene (0.32 mM) or toluene (0.74 mM); and second, when anaerobic succinate-utilizing cultures were shocked with ethylbenzene (0.5 mM), toluene (1.2 mM), p-cresol (3.0 mM), and phenol (6.5 mM) as single stressors or as a mixture (total solvent concentration, 2.7 mM). Under all tested conditions impaired growth was paralleled by decelerated nitrate-nitrite consumption. Additionally, alkylbenzene-utilizing cultures accumulated poly(3-hydroxybutyrate) (PHB) up to 10% of the cell dry weight. These physiological responses were also reflected on the proteomic level (as determined by two-dimensional difference gel electrophoresis), e.g., up-regulation of PHB granule-associated phasins, cytochrome cd1 nitrite reductase of denitrification, and several proteins involved in oxidative (e.g., SodB) and general (e.g., ClpB) stress responses.


2011 ◽  
Vol 78 (5) ◽  
pp. 1606-1610 ◽  
Author(s):  
Sven Lahme ◽  
Jens Harder ◽  
Ralf Rabus

ABSTRACTA novel alphaproteobacterium isolated from freshwater sediments, strain pMbN1, degrades 4-methylbenzoate to CO2under nitrate-reducing conditions. While strain pMbN1 utilizes several benzoate derivatives and other polar aromatic compounds, it cannot degradep-xylene or other hydrocarbons. Based on 16S rRNA gene sequence analysis, strain pMbN1 is affiliated with the genusMagnetospirillum.


Sign in / Sign up

Export Citation Format

Share Document