denitrifying bacterium
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 35)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Khadija kraiem ◽  
Hamadi Kallali ◽  
Rim Werheni Ammeri ◽  
salma Bessadok ◽  
Naceur Jedidi

Abstract The laboratory-scale pilot of constructed wetlands has been in operation for six months; (1) an unsaturated vertical flow constructed wetland (UVF-CW), this system was used to represent the classic vertical constructed wetlands, (2) a saturated vertical flow constructed wetland (SVF-CW), to evaluate the effects of the saturated condition on nitrogen removal and composition of the microbial community. The results showed that the saturation condition positiveley influenced the removal efficiencies of the nitrogen,, the aeverage removal rate of the total kjeldahl nitrogen increased from 56% in unsaturated vertical flow constructed wetland (UVF-CW) to 63% in saturated vertical flow constructed wetland ( SVF-CW). In addition, the microbial communities also was affected by the saturation condition, the relative abundances of nitrifying bacterium in UVF-CW are 13.8% (Nitrosomonas), 7.2% (Nitrosospira), 18.1% (Nitrospira) and 15.3% (Nitrobacter). In contrast, in SVF-CW, Nitrosomonas, Nitrosospira, Nitrospira and Nitrobacter only accounted for 6.8%, 5.6%, 7.4% and 10.6% respectively. However, the saturation condition seemed to increase denitrifying bacterium more than three times, in unsaturated vertical flow constructed wetland, only Pseudomonas (6.5%) and Paracoccus (4.85%) were detected, but in saturated vertical flow constructed wetland (SVF-CW), the abundance of Pseudomonas (13.08%) and Paracoccus (9.74%) were increased, and three other groups of denitrifying bacteria were also detected as Zoogloea (3.32%), Thauera (5.41%) and Thiobacillus (3).


Author(s):  
Hu Liao ◽  
Mingming Qu ◽  
Xinyue Hou ◽  
Xiaolan Lin ◽  
Hu Li ◽  
...  

Denitrification is a vital link in the global bio-nitrogen cycle. Here, we isolated a strain (M9-3-2T) that is a novel benzo[a]pyrene (BaP)-tolerant, anaerobic and aerobic denitrifying bacterium from a continuous BaP-enrichment cultured mangrove sediment. In silico comparative genomics and taxonomic analysis clearly revealed that strain M9-3-2T (=MCCC 1K03313T=JCM 32045T) represents a novel species of a novel genus named as Nitrogeniibacter mangrovi gen. nov., sp. nov., belonging to family Zoogloeaceae , order Rhodocyclales . In addition, the species Azoarcus pumilus is transferred into genus Aromatoleum and named Aromatoleum pumilum comb. nov. The predominant respiratory quinone of strain M9-3-2T was ubiquinone-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. In this study, the capacity of strain M9-3-2T to eliminate nitrate was detected under anaerobic and aerobic conditions, and the removal rates of nitrate were 6.1×10−6 µg N/l/h/cell and 3×10−7 µg N/l/h/cell, respectively. Our results suggested that strain M9-3-2T could play an important role in the nitrogen removal regardless of the presence of oxygen in natural or/and man-made ecosystems.


Sign in / Sign up

Export Citation Format

Share Document