scholarly journals Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli.

1992 ◽  
Vol 174 (7) ◽  
pp. 2124-2130 ◽  
Author(s):  
B L Wanner ◽  
M R Wilmes-Riesenberg
2005 ◽  
Vol 187 (7) ◽  
pp. 2386-2394 ◽  
Author(s):  
Cheryl Ingram-Smith ◽  
Andrea Gorrell ◽  
Sarah H. Lawrence ◽  
Prabha Iyer ◽  
Kerry Smith ◽  
...  

ABSTRACT Acetate kinase catalyzes the reversible magnesium-dependent synthesis of acetyl phosphate by transfer of the ATP γ-phosphoryl group to acetate. Inspection of the crystal structure of the Methanosarcina thermophila enzyme containing only ADP revealed a solvent-accessible hydrophobic pocket formed by residues Val93, Leu122, Phe179, and Pro232 in the active site cleft, which identified a potential acetate binding site. The hypothesis that this was a binding site was further supported by alignment of all acetate kinase sequences available from databases, which showed strict conservation of all four residues, and the recent crystal structure of the M. thermophila enzyme with acetate bound in this pocket. Replacement of each residue in the pocket produced variants with Km values for acetate that were 7- to 26-fold greater than that of the wild type, and perturbations of this binding pocket also altered the specificity for longer-chain carboxylic acids and acetyl phosphate. The kinetic analyses of variants combined with structural modeling indicated that the pocket has roles in binding the methyl group of acetate, influencing substrate specificity, and orienting the carboxyl group. The kinetic analyses also indicated that binding of acetyl phosphate is more dependent on interactions of the phosphate group with an unidentified residue than on interactions between the methyl group and the hydrophobic pocket. The analyses also indicated that Phe179 is essential for catalysis, possibly for domain closure. Alignments of acetate kinase, propionate kinase, and butyrate kinase sequences obtained from databases suggested that these enzymes have similar catalytic mechanisms and carboxylic acid substrate binding sites.


2015 ◽  
Vol 66 (1) ◽  
pp. 261-269 ◽  
Author(s):  
Chunguang Zhao ◽  
LiKun Cheng ◽  
Jian Wang ◽  
Zhiqiang Shen ◽  
Ning Chen

2004 ◽  
Vol 186 (22) ◽  
pp. 7593-7600 ◽  
Author(s):  
Adnan Hasona ◽  
Youngnyun Kim ◽  
F. G. Healy ◽  
L. O. Ingram ◽  
K. T. Shanmugam

ABSTRACT During anaerobic growth of bacteria, organic intermediates of metabolism, such as pyruvate or its derivatives, serve as electron acceptors to maintain the overall redox balance. Under these conditions, the ATP needed for cell growth is derived from substrate-level phosphorylation. In Escherichia coli, conversion of glucose to pyruvate yields 2 net ATPs, while metabolism of a pentose, such as xylose, to pyruvate only yields 0.67 net ATP per xylose due to the need for one (each) ATP for xylose transport and xylulose phosphorylation. During fermentative growth, E. coli produces equimolar amounts of acetate and ethanol from two pyruvates, and these reactions generate one additional ATP from two pyruvates (one hexose equivalent) while still maintaining the overall redox balance. Conversion of xylose to acetate and ethanol increases the net ATP yield from 0.67 to 1.5 per xylose. An E. coli pfl mutant lacking pyruvate formate lyase cannot convert pyruvate to acetyl coenzyme A, the required precursor for acetate and ethanol production, and could not produce this additional ATP. E. coli pfl mutants failed to grow under anaerobic conditions in xylose minimal medium without any negative effect on their survival or aerobic growth. An ackA mutant, lacking the ability to generate ATP from acetyl phosphate, also failed to grow in xylose minimal medium under anaerobic conditions, confirming the need for the ATP produced by acetate kinase for anaerobic growth on xylose. Since arabinose transport by AraE, the low-affinity, high-capacity, arabinose/H+ symport, conserves the ATP expended in pentose transport by the ABC transporter, both pfl and ackA mutants grew anaerobically with arabinose. AraE-based xylose transport, achieved after constitutively expressing araE, also supported the growth of the pfl mutant in xylose minimal medium. These results suggest that a net ATP yield of 0.67 per pentose is only enough to provide for maintenance energy but not enough to support growth of E. coli in minimal medium. Thus, pyruvate formate lyase and acetate kinase are essential for anaerobic growth of E. coli on xylose due to energetic constraints.


2009 ◽  
Vol 47 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Xueqiao Liu ◽  
Gabriela R. Peña Sandoval ◽  
Barry L. Wanner ◽  
Won Seok Jung ◽  
Dimitris Georgellis ◽  
...  

1983 ◽  
Vol 36 (6) ◽  
pp. 487 ◽  
Author(s):  
M W Hickey ◽  
AJ Hillier ◽  
GR jago

Lactobacillus acidophilus, L. bulgaricus, L. casei, L. delbrueckii, L. lactis and L. plantarum contained a pyruvate oxidase for the oxidation of pyruvate to acetyl phosphate and acetate. The presence of an acetate kinase converted the acetyl phosphate to acetate. L. casei and L. plantarum produced lactate and acetoin, in addition to acetate, under the conditions used while L. casei also produced diacetyL L. casei and L. plantarum were the only species to utilize citrate. L. helveticus and L. helveticus subsp. jugurti did not utilize pyruvate under the conditions used.


Sign in / Sign up

Export Citation Format

Share Document