scholarly journals The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation.

1993 ◽  
Vol 175 (3) ◽  
pp. 604-612 ◽  
Author(s):  
S J Wagner ◽  
S P Thomas ◽  
R I Kaufman ◽  
B T Nixon ◽  
S E Stevens
Author(s):  
L. P. Hardie ◽  
D. L. Balkwill ◽  
S. E. Stevens

Agmenellum quadruplicatum is a unicellular, non-nitrogen-fixing, marine cyanobacterium (blue-green alga). The ultrastructure of this organism, when grown in the laboratory with all necessary nutrients, has been characterized thoroughly. In contrast, little is known of its ultrastructure in the specific nutrient-limiting conditions typical of its natural habitat. Iron is one of the nutrients likely to limit this organism in such natural environments. It is also of great importance metabolically, being required for both photosynthesis and assimilation of nitrate. The purpose of this study was to assess the effects (if any) of iron limitation on the ultrastructure of A. quadruplicatum. It was part of a broader endeavor to elucidate the ultrastructure of cyanobacteria in natural systemsActively growing cells were placed in a growth medium containing 1% of its usual iron. The cultures were then sampled periodically for 10 days and prepared for thin sectioning TEM to assess the effects of iron limitation.


Planta ◽  
2005 ◽  
Vol 222 (4) ◽  
pp. 667-677 ◽  
Author(s):  
Magali Feraud ◽  
Céline Masclaux-Daubresse ◽  
Sylvie Ferrario-Méry ◽  
Karine Pageau ◽  
Maud Lelandais ◽  
...  

2006 ◽  
Vol 33 (2) ◽  
pp. 153 ◽  
Author(s):  
Mohammad S. Hoque ◽  
Josette Masle ◽  
Michael K. Udvardi ◽  
Peter R. Ryan ◽  
Narayana M. Upadhyaya

A transgenic approach was undertaken to investigate the role of a rice ammonium transporter (OsAMT1-1) in ammonium uptake and consequent ammonium assimilation under different nitrogen regimes. Transgenic lines overexpressing OsAMT1-1 were produced by Agrobacterium-mediated transformation of two rice cultivars, Taipei 309 and Jarrah, with an OsAMT1-1 cDNA gene construct driven by the maize ubiquitin promoter. Transcript levels of OsAMT1-1 in both Taipei 309 and Jarrah transgenic lines correlated positively with transgene copy number. Shoot and root biomass of some transgenic lines decreased during seedling and early vegetative stage compared to the wild type, especially when grown under high (2 mm) ammonium nutrition. Transgenic plants, particularly those of cv. Jarrah recovered in the mid-vegetative stage under high ammonium nutrition. Roots of the transgenic plants showed increased ammonium uptake and ammonium content. We conclude that the decreased biomass of the transgenic lines at early stages of growth might be caused by the accumulation of ammonium in the roots owing to the inability of ammonium assimilation to match the greater ammonium uptake.


1997 ◽  
Vol 43 (11) ◽  
pp. 1005-1010 ◽  
Author(s):  
Kien Trung Nguyen ◽  
Lieu Thi Nguyen ◽  
Jan Kopecký ◽  
Vladislav Běhal

Glutamate dehydrogenase is an enzyme responsible for ammonium assimilation and glutamate catabolism in organisms. The tylosin producer Streptomyces fradiae possesses both NADP- and NAD-dependent glutamate dehydrogenases. The latter enzyme was purified 498-fold with a 7.5% recovery by a six-step protocol. The enzyme is composed of two subunits, each of Mr 47 000, and could form active aggregates of four or eight subunits. Its activity was inactivated by alkaline pH or temperatures of −20 °C or above 40 °C. Activities assayed in the direction of oxidative deamination and reductive amination were optimal at pH 9.2 and 8.8, respectively, and at temperatures of 30–35 °C. No activity was found when NAD(H) was replaced with NADP(H). The Km values were 32.2 mM for L-glutamate, 0.3 mM for NAD+, 3.4 mM for 2-ketoglutarate, 14.2 mM for NH4+, and 0.05 mM for NADH. Deamination activity was partially inhibited by adenyl nucleotides and several divalent cations; amination activity was not affected by the nucleotides but significantly inhibited by Cu2+ or Ni2+.Key words: Streptomyces fradiae, NAD-dependent glutamate dehydrogenase, purification, properties.


Sign in / Sign up

Export Citation Format

Share Document