scholarly journals Identification of a DNA element in the fission yeast Schizosaccharomyces pombe nmt1 (thi3) promoter involved in thiamine-regulated gene expression.

1997 ◽  
Vol 179 (18) ◽  
pp. 5956-5958 ◽  
Author(s):  
A Zurlinden ◽  
M E Schweingruber
1990 ◽  
Vol 10 (12) ◽  
pp. 6791-6798 ◽  
Author(s):  
H L Levin ◽  
D C Weaver ◽  
J D Boeke

Two related families of transposons were isolated from schizosaccharomyces pombe, an organism which has been the object of extensive genetic studies which had previously produced no evidence for the existence of such elements. These two classes of repeated DNAs, dubbed Tf1 (transposon of fission yeast 1) and Tf2 have many properties of retrotransposons. Tf1 and Tf2 both possess long terminal repeats and predicted protein sequences that resemble the protease, reverse transcriptase, and integrase domains of retroviruses. The chromosomal locations and total numbers of Tf1 and Tf2 differ greatly in various isolates of S. pombe. The Tf elements are expressed in the form of 4.5-kb mRNAs. The complete sequence of Tf1 was determined and suggests that a novel mechanism for regulating its gene expression may be used.


1997 ◽  
Vol 17 (6) ◽  
pp. 3356-3363 ◽  
Author(s):  
G Degols ◽  
P Russell

Exposure of mammalian cells to UV irradiation or alkylating agents leads to the activation of the c-Jun N-terminal kinase and p38 stress-activated protein kinase cascades, phosphorylation of c-Jun and ATF-2 bZIP transcription factors, and finally to selective induction of gene expression. This UV response is believed to be crucially important for cell survival, although conclusive evidence is lacking. Here, we address this issue by investigating a homologous UV response pathway in the fission yeast Schizosaccharomyces pombe. In fission yeast cells, UV irradiation induces activation of Spc1 stress-activated protein kinase, which in turn phosphorylates the Atf1 bZIP transcription factor. spc1 mutants are hypersensitive to killing by UV at a level equivalent to some checkpoint rad mutants. Whereas checkpoint rad mutants fail to arrest division in response to DNA damage, spc1 mutants are defective at resuming cell division after UV exposure. Levels of basal and UV-induced transcription of ctt1+, which encodes a catalase believed important for combating oxidative stress caused by UV, are extremely low in spc1 mutants. Atf1 is required for UV-induced transcription of ctt1+, but atf1 mutants are not hypersensitive to killing by UV. This surprising finding is explained by the observation that ctt1+ basal expression is unaffected in atf1 single mutant and spc1 atf1 double mutant cells, suggesting that unphosphorylated Atf1 represses ctt1+ expression in spc1 cells. In fact, the level of UV sensitivity of spc1 atf1 double mutant cells is intermediate between those of the wild type and spc1 mutants. These findings suggest the following. (i) Key properties of UV response mechanisms are remarkably similar in mammals and S. pombe. (ii) Activation of Spc1 kinase greatly enhances survival of UV-irradiated cells. (iii) Induction of gene expression by activation of Atf1 may not be the most important mechanism by which stress-activated kinases function in the UV response.


1990 ◽  
Vol 10 (12) ◽  
pp. 6791-6798
Author(s):  
H L Levin ◽  
D C Weaver ◽  
J D Boeke

Two related families of transposons were isolated from schizosaccharomyces pombe, an organism which has been the object of extensive genetic studies which had previously produced no evidence for the existence of such elements. These two classes of repeated DNAs, dubbed Tf1 (transposon of fission yeast 1) and Tf2 have many properties of retrotransposons. Tf1 and Tf2 both possess long terminal repeats and predicted protein sequences that resemble the protease, reverse transcriptase, and integrase domains of retroviruses. The chromosomal locations and total numbers of Tf1 and Tf2 differ greatly in various isolates of S. pombe. The Tf elements are expressed in the form of 4.5-kb mRNAs. The complete sequence of Tf1 was determined and suggests that a novel mechanism for regulating its gene expression may be used.


2014 ◽  
Vol 444 (2) ◽  
pp. 254-259 ◽  
Author(s):  
Agata Smialowska ◽  
Ingela Djupedal ◽  
Jingwen Wang ◽  
Per Kylsten ◽  
Peter Swoboda ◽  
...  

2005 ◽  
Vol 16 (6) ◽  
pp. 2734-2745 ◽  
Author(s):  
Karen M. Lee ◽  
Ida Miklos ◽  
Hongyan Du ◽  
Stephen Watt ◽  
Zsolt Szilagyi ◽  
...  

The fission yeast Mcs6–Mcs2–Pmh1 complex, homologous to metazoan Cdk7–cyclin H-Mat1, has dual functions in cell division and transcription: as a partially redundant cyclin-dependent kinase (CDK)-activating kinase (CAK) that phosphorylates the major cell cycle CDK, Cdc2, on Thr-167; and as the RNA polymerase (Pol) II carboxyl-terminal domain (CTD) kinase associated with transcription factor (TF) IIH. We analyzed conditional mutants of mcs6 and pmh1, which activate Cdc2 normally but cannot complete cell division at restrictive temperature and arrest with decreased CTD phosphorylation. Transcriptional profiling by microarray hybridization revealed only modest effects on global gene expression: a one-third reduction in a severe mcs6 mutant after prolonged incubation at 36°C. In contrast, a small subset of transcripts (∼5%) decreased by more than twofold after Mcs6 complex function was compromised. The signature of repressed genes overlapped significantly with those of cell separation mutants sep10 and sep15. Sep10, a component of the Pol II Mediator complex, becomes essential in mcs6 or pmh1 mutant backgrounds. Moreover, transcripts dependent on the forkhead transcription factor Sep1, which are expressed coordinately during mitosis, were repressed in Mcs6 complex mutants, and Mcs6 also interacts genetically with Sep1. Thus, the Mcs6 complex, a direct activator of Cdc2, also influences the cell cycle transcriptional program, possibly through its TFIIH-associated kinase function.


2007 ◽  
Vol 32 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Yuji Chikashige ◽  
Chihiro Tsutsumi ◽  
Kasumi Okamasa ◽  
Miho Yamane ◽  
Jun-ichi Nakayama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document