cdk activating kinase
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 7)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 17 (2) ◽  
pp. e1008992
Author(s):  
Hongxia Zhang ◽  
Lingbing Zeng ◽  
Qiong Liu ◽  
Guilin Jin ◽  
Jieyu Zhang ◽  
...  

Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT1 accumulation and localization, thus interfering with its interaction with CDK7. Furthermore, CVB3 VP1 could suppress CAK complex enzymic phosphorylation activity towards RNA Pol II and CDK4/6, direct substrates of CAK. VP1 also suppresses phosphorylation of retinoblastoma protein (pRb), an indirect CAK substrate, especially at phospho-pRb Ser780 and phospho-pRb Ser807/811 residues, which are associated with cell proliferation. Finally, we present evidence using deletion mutants that the C-terminal domain (VP1-D8, 768-859aa) is the minimal VP1 region required for its interaction with MAT1, and furthermore, VP1-D8 alone was sufficient to arrest cells in G1/S phase as observed during CVB3 infection. Taken together, we demonstrate that CVB3 VP1 can inhibit CAK complex assembly and activity through direct interaction with MAT1, to block MAT1-mediated CAK-CDK4/6-Rb signaling, and ultimately suppress cell proliferation in pancreatic cells. These findings substantially extend our basic understanding of CVB3-mediated pancreatitis, providing strong candidates for strategic therapeutic targeting.


2021 ◽  
Vol 120 (4) ◽  
pp. 677-686
Author(s):  
Basil J. Greber ◽  
Jonathan Remis ◽  
Simak Ali ◽  
Eva Nogales

2020 ◽  
Author(s):  
Hongxia Zhang ◽  
Lingbing Zeng ◽  
Qiong Liu ◽  
Guilin Jin ◽  
Jieyu Zhang ◽  
...  

AbstractCoxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT1 accumulation and localization, thus interfering with its interaction with CDK7. Furthermore, CVB3 VP1 could suppress CAK complex enzymic phosphorylation activity towards RNA Pol II and CDK4/6, direct substrates of CAK. VP1 also suppresses phosphorylation of retinoblastoma protein (pRb), an indirect CAK substrate, especially at phospho-pRb Ser780 and phospho-pRb Ser807/811 residues, which are associated with cell proliferation. Finally, we present evidence using deletion mutants that the C-terminal domain (VP1-D8, 768-859aa) is the minimal VP1 region required for its interaction with MAT1, and furthermore, VP1-D8 alone was sufficient to arrest cells in G1/S phase as observed during CVB3 infection. Taken together, we demonstrate that CVB3 VP1 can inhibit CAK complex assembly and activity through direct interaction with MAT1, to block MAT1-mediated CAK-CDK4/6-Rb signaling, and ultimately suppress cell proliferation in pancreatic cells. These findings substantially extend our basic understanding of CVB3-mediated pancreatitis, providing strong candidates for strategic therapeutic targeting.


2020 ◽  
Vol 117 (37) ◽  
pp. 22849-22857 ◽  
Author(s):  
Basil J. Greber ◽  
Juan M. Perez-Bertoldi ◽  
Kif Lim ◽  
Anthony T. Iavarone ◽  
Daniel B. Toso ◽  
...  

The human CDK-activating kinase (CAK), a complex composed of cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II (Pol II) subunit RPB1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell cycle progression. Here, we have determined the three-dimensional (3D) structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and to aid in the rational design of therapeutic compounds.


2020 ◽  
Author(s):  
Stefan Peissert ◽  
Andreas Schlosser ◽  
Rafaela Kendel ◽  
Jochen Kuper ◽  
Caroline Kisker

AbstractCDK7, Cyclin H, and MAT1 form the heterotrimeric CDK-activating kinase (CAK) complex. CAK is a vital factor for the two essential processes of transcription and cell cycle control. When associated with the general transcription factor II H (TFIIH) it activates RNA polymerase II by hyperphosphorylation of its C-terminal domain (CTD). In the absence of TFIIH it phosphorylates the T-loop of CDKs that control cell cycle progression. CAK holds a special position among the CDK branch due to this dual activity and the dependence on the MAT1 protein for activation in addition to Cyclin H. We solved the structure of the CAK complex from the model organism C. thermophilum at 2.6 Å resolution. Our structure reveals an intricate network of interactions between MAT1 and its two binding partners CDK7 and Cyclin H providing a structural basis for the mechanism of CDK7 activation and CAK activity regulation. In vitro activity measurements combined with functional mutagenesis show that CDK7 activation can occur independently of T-loop phosphorylation and is thus exclusively MAT1 dependent by positioning the CDK7 T-loop in its active conformation. Finally, our structure of the active CAK with a peptide model provides a molecular rationale for heptad repeat phosphorylation.Significance StatementThe fundamental processes of cell cycle regulation and transcription are linked by the heterotrimeric CDK-activating kinase (CAK) complex. We have solved the crystal structure of the active CAK complex and provide a molecular rationale for CAK activation, regulation, and substrate recognition thereby highly advancing our understanding of this essential factor.


2020 ◽  
Author(s):  
Basil J. Greber ◽  
Juan M. Perez-Bertoldi ◽  
Kif Lim ◽  
Anthony T. Iavarone ◽  
Daniel B. Toso ◽  
...  

AbstractThe human CDK-activating kinase (CAK), a complex composed of cyclin dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II subunit Rpb1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell-cycle progression. Here, we have determined the three-dimensional structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and aid in the rational design of therapeutic compounds.SignificanceControl of gene expression and the cell cycle is critical for appropriate cell growth and timely cell division. Failure of the mechanisms regulating these processes can result in proliferative diseases. A molecular complex termed the CDK activating kinase (CAK) impinges on both of these regulatory networks in human cells and is thus a possible drug target for treatment of cancer. Here, we use cryo-electron microscopy to describe the detailed molecular structure of the human CAK, revealing its architecture and the interactions between its regulatory elements. Additionally, we have obtained the structure of the CAK in complex with a small-molecule inhibitor.


Development ◽  
2017 ◽  
Vol 145 (2) ◽  
pp. dev156802 ◽  
Author(s):  
Rishita Narendra Nag ◽  
Selina Niggli ◽  
Sofia Sousa-Guimarães ◽  
Paula Vazquez-Pianzola ◽  
Beat Suter

Sign in / Sign up

Export Citation Format

Share Document