scholarly journals Molecular Cloning and Physical Mapping of the Daptomycin Gene Cluster from Streptomyces roseosporus

1998 ◽  
Vol 180 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Margaret A. Mchenney ◽  
Thomas J. Hosted ◽  
Bradley S. Dehoff ◽  
Paul R. Rosteck ◽  
Richard H. Baltz

ABSTRACT The daptomycin biosynthetic gene cluster of Streptomyces roseosporus was analyzed by Tn5099 mutagenesis, molecular cloning, partial DNA sequencing, and insertional mutagenesis with cloned segments of DNA. The daptomycin biosynthetic gene cluster spans at least 50 kb and is located about 400 to 500 kb from one end of the ∼7,100-kb linear chromosome. We identified two peptide synthetase coding regions interrupted by a 10- to 20-kb region that may encode other functions in lipopeptide biosynthesis.

Author(s):  
Daniel Carretero Molina ◽  
Francisco Javier Ortiz-Lopez ◽  
Jesús Martín ◽  
Ignacio González ◽  
Marina Sánchez-Hidalgo ◽  
...  

Pentaminomycins F-H, a group of three new hydroxyarginine-containing cyclic pentapeptides, were isolated from cultures of a <i>Streptomyces cacaoi</i> subsp. <i>cacaoi</i> strain along with the known pentaminomycins A-E. The structures of the new peptides were determined by a combination of mass spectrometry and NMR and Marfey's analyses. Among them, pentaminomycins F and G were shown to contain in their structures the rare amino acid 3-(2-pyridyl)-alanine. This finding represents the first reported example of non-ribosomal peptides containing this residue. The LDLLD chiral sequence found for the three compounds was in agreement with that reported for previously isolated pentaminomycins and consistent with the epimerization domains present in the putative non-robosomal peptide synthetase (NRPS) biosynthetic gene cluster.<br>


2002 ◽  
Vol 267 (5) ◽  
pp. 636-646 ◽  
Author(s):  
Y. Abe ◽  
T. Suzuki ◽  
C. Ono ◽  
K. Iwamoto ◽  
M. Hosobuchi ◽  
...  

2009 ◽  
Vol 192 (2) ◽  
pp. 426-435 ◽  
Author(s):  
Silke I. Patzer ◽  
Volkmar Braun

ABSTRACT The main siderophores produced by streptomycetes are desferrioxamines. Here we show that Streptomyces sp. ATCC 700974 and several Streptomyces griseus strains, in addition, synthesize a hitherto unknown siderophore with a catechol-peptide structure, named griseobactin. The production is repressed by iron. We sequenced a 26-kb DNA region comprising a siderophore biosynthetic gene cluster encoding proteins similar to DhbABCEFG, which are involved in the biosynthesis of 2,3-dihydroxybenzoate (DHBA) and in the incorporation of DHBA into siderophores via a nonribosomal peptide synthetase. Adjacent to the biosynthesis genes are genes that encode proteins for the secretion, uptake, and degradation of siderophores. To correlate the gene cluster with griseobactin synthesis, the dhb genes in ATCC 700974 were disrupted. The resulting mutants no longer synthesized DHBA and griseobactin; production of both was restored by complementation with the dhb genes. Heterologous expression of the dhb genes or of the entire griseobactin biosynthesis gene cluster in the catechol-negative strain Streptomyces lividans TK23 resulted in the synthesis and secretion of DHBA or griseobactin, respectively, suggesting that these genes are sufficient for DHBA and griseobactin biosynthesis. Griseobactin was purified and characterized; its structure is consistent with a cyclic and, to a lesser extent, linear form of the trimeric ester of 2,3-dihydroxybenzoyl-arginyl-threonine complexed with aluminum under iron-limiting conditions. This is the first report identifying the gene cluster for the biosynthesis of DHBA and a catechol siderophore in Streptomyces.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 388 ◽  
Author(s):  
Li Liao ◽  
Shiyuan Su ◽  
Bin Zhao ◽  
Chengqi Fan ◽  
Jin Zhang ◽  
...  

Rare actinobacterial species are considered as potential resources of new natural products. Marisediminicola antarctica ZS314T is the only type strain of the novel actinobacterial genus Marisediminicola isolated from intertidal sediments in East Antarctica. The strain ZS314T was able to produce reddish orange pigments at low temperatures, showing characteristics of carotenoids. To understand the biosynthetic potential of this strain, the genome was completely sequenced for data mining. The complete genome had 3,352,609 base pairs (bp), much smaller than most genomes of actinomycetes. Five biosynthetic gene clusters (BGCs) were predicted in the genome, including a gene cluster responsible for the biosynthesis of C50 carotenoid, and four additional BGCs of unknown oligosaccharide, salinixanthin, alkylresorcinol derivatives, and NRPS (non-ribosomal peptide synthetase) or amino acid-derived compounds. Further experimental characterization indicated that the strain may produce C.p.450-like carotenoids, supporting the genomic data analysis. A new xanthorhodopsin gene was discovered along with the analysis of the salinixanthin biosynthetic gene cluster. Since little is known about this genus, this work improves our understanding of its biosynthetic potential and provides opportunities for further investigation of natural products and strategies for adaptation to the extreme Antarctic environment.


2007 ◽  
Vol 73 (11) ◽  
pp. 3460-3469 ◽  
Author(s):  
Yi-Qiang Cheng ◽  
Min Yang ◽  
Andrea M. Matter

ABSTRACT A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.


2001 ◽  
Vol 98 (15) ◽  
pp. 8548-8553 ◽  
Author(s):  
H.-T. Chiu ◽  
B. K. Hubbard ◽  
A. N. Shah ◽  
J. Eide ◽  
R. A. Fredenburg ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hyun Bong Park ◽  
Corey E Perez ◽  
Karl W Barber ◽  
Jesse Rinehart ◽  
Jason M Crawford

Nonribosomal peptides represent a large class of metabolites with pharmaceutical relevance. Pteridines, such as pterins, folates, and flavins, are heterocyclic metabolites that often serve as redox-active cofactors. The biosynthetic machineries for construction of these distinct classes of small molecules operate independently in the cell. Here, we discovered an unprecedented nonribosomal peptide synthetase-like-pteridine synthase hybrid biosynthetic gene cluster in Photorhabdus luminescens using genome synteny analysis. P. luminescens is a Gammaproteobacterium that undergoes phenotypic variation and can have both pathogenic and mutualistic roles. Through extensive gene deletion, pathway-targeted molecular networking, quantitative proteomic analysis, and NMR, we show that the genetic locus affects the regulation of quorum sensing and secondary metabolic enzymes and encodes new pteridine metabolites functionalized with cis-amide acyl-side chains, termed pepteridine A (1) and B (2). The pepteridines are produced in the pathogenic phenotypic variant and represent the first reported metabolites to be synthesized by a hybrid NRPS-pteridine pathway. These studies expand our view of the combinatorial biosynthetic potential available in bacteria.


Sign in / Sign up

Export Citation Format

Share Document