non ribosomal peptides
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 28)

H-INDEX

12
(FIVE YEARS 4)

Encyclopedia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Javier Avalos ◽  
M. Carmen Limón

Fungal secondary metabolites (SMs) comprise a vast collection of compounds expendable for these organisms under laboratory conditions. They exhibit enormous chemical diversity, and usually belong to four major families: terpenoids, polyketides, non-ribosomal peptides, or a combination of the last two. Their functions are very diverse and are normally associated with a greater fitness of the producing fungi in their environment, which often compete with other microorganisms or interact with host plants. Many SMs have beneficial applications, e.g., as antibiotics or medical drugs, but others, known as mycotoxins, are harmful to health.


Author(s):  
Yern-Hyerk Shin ◽  
Yeon Hee Ban ◽  
Jisu Shin ◽  
In Wook Park ◽  
Soljee Yoon ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Aiswarya Girija ◽  
Mallika Vijayanathan ◽  
Sweda Sreekumar ◽  
Jasim Basheer ◽  
Tara G Menon ◽  
...  

: Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.


Author(s):  
Kenichi Matsuda ◽  
Kei Fujita ◽  
Toshiyuki Wakimoto

Abstract Penicillin binding protein-type thioesterases (PBP-type TEs) are a recently identified group of peptide cyclases that catalyze head-to-tail macrolactamization of non-ribosomal peptides. PenA, a new member of this group, is involved in the biosyntheses of cyclic pentapeptides. In this study, we demonstrated the enzymatic activity of PenA in vitro, and analyzed its substrate scope with a series of synthetic substrates. A comparison of the reaction profiles between PenA and SurE, a representative PBP-type TE, showed that PenA is more specialized for small peptide cyclization. A computational model provided a possible structural rationale for the altered specificity for substrate chain lengths.


2021 ◽  
Author(s):  
Harsh Maan ◽  
Jonathan Friedman ◽  
Ilana Kolodkin-Gal

AbstractMicrobial communities employ a variety of complex strategies to compete successfully against competitors sharing their niche, with antibiotic production being a common strategy of aggression. Here, by systematic evaluation of all non-ribosomal peptides (NRP) produced by B. subtilis clade, we revealed that they acted either synergistically or additively to effectively eliminate phylogenetically distinct competitors. All four major NRP biosynthetic clusters were also imperative for the survival of B. subtilis in a complex community extracted from the rhizosphere. The production of NRP came with a fitness cost manifested in growth inhibition, rendering NRP synthesis uneconomical when growing in proximity to a phylogenetically close species, carrying resistance against the same antibiotics. To resolve this conflict and ease the fitness cost, NRP production was only induced by the presence of peptidoglycan cue from a sensitive competitor. These results experimentally demonstrate a general ecological concept – closely related communities (“self”) are favoured during competition, due to compatibility in attack and defence mechanisms.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jolanta Lebedeva ◽  
Gabriele Jukneviciute ◽  
Rimvydė Čepaitė ◽  
Vida Vickackaite ◽  
Raminta Pranckutė ◽  
...  

The genome sequencing and mining of microorganisms from unexplored and extreme environments has become important in the process of identifying novel biosynthetic pathways. In the present study, the biosynthetic potential of Paenibacillus sp. strains 23TSA30-6 and 28ISP30-2 was investigated. Both strains were isolated from the deep oligotrophic Krubera-Voronja Cave and were found to be highly active against both Gram-positive and Gram-negative bacteria. Genome mining revealed a high number of biosynthetic gene clusters in the cave strains: 21 for strain 23TSA30-6 and 19 for strain 28ISP30-2. Single clusters encoding the biosynthesis of phosphonate, terpene, and siderophore, as well as a single trans-AT polyketide synthase/non-ribosomal peptide synthetase, were identified in both genomes. The most numerous clusters were assigned to the biosynthetic pathways of non-ribosomal peptides and ribosomally synthesized and post-translationally modified peptides. Although four non-ribosomal peptide synthetase gene clusters were predicted to be involved in the biosynthesis of known compounds (fusaricidin, polymyxin B, colistin A, and tridecaptin) of the genus Paenibacillus, discrepancies in the structural organization of the clusters, as well as in the substrate specificity of some adenylation domains, were detected between the reference pathways and the clusters in our study. Among the clusters involved in the biosynthesis of ribosomally synthesized peptides, only one was predicted to be involved in the biosynthesis of a known compound: paenicidin B. Most biosynthetic gene clusters in the genomes of the cave strains showed a low similarity with the reference pathways and were predicted to represent novel biosynthetic pathways. In addition, the cave strains differed in their potential to encode the biosynthesis of a few unique, previously unknown compounds (class II lanthipeptides and three non-ribosomal peptides). The phenotypic characterization of proteinaceous and volatile compounds produced by strains 23TSA30-6 and 28ISP30-2 was also performed, and the results were compared with those of genome mining.


2021 ◽  
Author(s):  
Samantha J. Bann ◽  
Ross D. Ballantine ◽  
Stephen A. Cochrane

Tridecaptins are a re-emerging class of non-ribosomal antibacterial peptides (NRAPs) with potent activity against highly problematic strains of Gram-negative bacteria.


2020 ◽  
Vol 25 (6) ◽  
pp. 795-809
Author(s):  
Komal Sharma ◽  
Mohammad Rifqi Ghiffary ◽  
Hyun Uk Kim ◽  
Sang Yup Lee

Author(s):  
Daniel Carretero Molina ◽  
Francisco Javier Ortiz-Lopez ◽  
Jesús Martín ◽  
Ignacio González ◽  
Marina Sánchez-Hidalgo ◽  
...  

Pentaminomycins F-H, a group of three new hydroxyarginine-containing cyclic pentapeptides, were isolated from cultures of a <i>Streptomyces cacaoi</i> subsp. <i>cacaoi</i> strain along with the known pentaminomycins A-E. The structures of the new peptides were determined by a combination of mass spectrometry and NMR and Marfey's analyses. Among them, pentaminomycins F and G were shown to contain in their structures the rare amino acid 3-(2-pyridyl)-alanine. This finding represents the first reported example of non-ribosomal peptides containing this residue. The LDLLD chiral sequence found for the three compounds was in agreement with that reported for previously isolated pentaminomycins and consistent with the epimerization domains present in the putative non-robosomal peptide synthetase (NRPS) biosynthetic gene cluster.<br>


Sign in / Sign up

Export Citation Format

Share Document